sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(240, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,2,1]))
pari:[g,chi] = znchar(Mod(77,240))
Modulus: | 240 | |
Conductor: | 240 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 4 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ240(53,⋅)
χ240(77,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(31,181,161,97) → (1,−i,−1,i)
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ240(77,a) |
1 | 1 | −i | i | 1 | −i | −i | −i | i | 1 | 1 | 1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)