Properties

Label 240.77
Modulus 240240
Conductor 240240
Order 44
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3,2,1]))
 
Copy content pari:[g,chi] = znchar(Mod(77,240))
 

Basic properties

Modulus: 240240
Conductor: 240240
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 44
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 240.bf

χ240(53,)\chi_{240}(53,\cdot) χ240(77,)\chi_{240}(77,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.2304000.2

Values on generators

(31,181,161,97)(31,181,161,97)(1,i,1,i)(1,-i,-1,i)

First values

aa 1-11177111113131717191923232929313137374141
χ240(77,a) \chi_{ 240 }(77, a) 1111i-iii11i-ii-ii-iii111111
Copy content sage:chi.jacobi_sum(n)
 
χ240(77,a)   \chi_{ 240 }(77,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ240(77,))   \tau_{ a }( \chi_{ 240 }(77,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ240(77,),χ240(n,))   J(\chi_{ 240 }(77,·),\chi_{ 240 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ240(77,))  K(a,b,\chi_{ 240 }(77,·)) \; at   a,b=\; a,b = e.g. 1,2