Properties

Label 2400.1249
Modulus 24002400
Conductor 55
Order 22
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,0,1]))
 
pari: [g,chi] = znchar(Mod(1249,2400))
 

Basic properties

Modulus: 24002400
Conductor: 55
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ5(4,)\chi_{5}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2400.f

χ2400(1249,)\chi_{2400}(1249,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(5)\Q(\sqrt{5})

Values on generators

(1951,901,1601,577)(1951,901,1601,577)(1,1,1,1)(1,1,1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ2400(1249,a) \chi_{ 2400 }(1249, a) 11111-1111-11-1111-111111-111
sage: chi.jacobi_sum(n)
 
χ2400(1249,a)   \chi_{ 2400 }(1249,a) \; at   a=\;a = e.g. 2