Properties

Label 2420.1299
Modulus $2420$
Conductor $2420$
Order $22$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,11,12]))
 
pari: [g,chi] = znchar(Mod(1299,2420))
 

Basic properties

Modulus: \(2420\)
Conductor: \(2420\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2420.bd

\(\chi_{2420}(199,\cdot)\) \(\chi_{2420}(419,\cdot)\) \(\chi_{2420}(639,\cdot)\) \(\chi_{2420}(859,\cdot)\) \(\chi_{2420}(1079,\cdot)\) \(\chi_{2420}(1299,\cdot)\) \(\chi_{2420}(1519,\cdot)\) \(\chi_{2420}(1739,\cdot)\) \(\chi_{2420}(1959,\cdot)\) \(\chi_{2420}(2399,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((1211,1937,2301)\) → \((-1,-1,e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2420 }(1299, a) \) \(-1\)\(1\)\(1\)\(e\left(\frac{9}{11}\right)\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(1\)\(e\left(\frac{3}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2420 }(1299,a) \;\) at \(\;a = \) e.g. 2