sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2420, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,11,12]))
pari:[g,chi] = znchar(Mod(1299,2420))
Modulus: | 2420 | |
Conductor: | 2420 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 22 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2420(199,⋅)
χ2420(419,⋅)
χ2420(639,⋅)
χ2420(859,⋅)
χ2420(1079,⋅)
χ2420(1299,⋅)
χ2420(1519,⋅)
χ2420(1739,⋅)
χ2420(1959,⋅)
χ2420(2399,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1211,1937,2301) → (−1,−1,e(116))
a |
−1 | 1 | 3 | 7 | 9 | 13 | 17 | 19 | 21 | 23 | 27 | 29 |
χ2420(1299,a) |
−1 | 1 | 1 | e(119) | 1 | e(2213) | e(225) | e(2217) | e(119) | e(112) | 1 | e(113) |
sage:chi.jacobi_sum(n)