Properties

Label 243675.11323
Modulus $243675$
Conductor $81225$
Order $1140$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(1140))
 
M = H._module
 
chi = DirichletCharacter(H, M([380,627,810]))
 
pari: [g,chi] = znchar(Mod(11323,243675))
 

Basic properties

Modulus: \(243675\)
Conductor: \(81225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1140\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81225}(38398,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.zz

\(\chi_{243675}(37,\cdot)\) \(\chi_{243675}(208,\cdot)\) \(\chi_{243675}(1063,\cdot)\) \(\chi_{243675}(1747,\cdot)\) \(\chi_{243675}(2602,\cdot)\) \(\chi_{243675}(2773,\cdot)\) \(\chi_{243675}(3628,\cdot)\) \(\chi_{243675}(4312,\cdot)\) \(\chi_{243675}(5167,\cdot)\) \(\chi_{243675}(5338,\cdot)\) \(\chi_{243675}(6877,\cdot)\) \(\chi_{243675}(7903,\cdot)\) \(\chi_{243675}(8758,\cdot)\) \(\chi_{243675}(9442,\cdot)\) \(\chi_{243675}(10297,\cdot)\) \(\chi_{243675}(11323,\cdot)\) \(\chi_{243675}(12862,\cdot)\) \(\chi_{243675}(13033,\cdot)\) \(\chi_{243675}(13888,\cdot)\) \(\chi_{243675}(14572,\cdot)\) \(\chi_{243675}(15427,\cdot)\) \(\chi_{243675}(15598,\cdot)\) \(\chi_{243675}(16453,\cdot)\) \(\chi_{243675}(17137,\cdot)\) \(\chi_{243675}(17992,\cdot)\) \(\chi_{243675}(18163,\cdot)\) \(\chi_{243675}(19702,\cdot)\) \(\chi_{243675}(20728,\cdot)\) \(\chi_{243675}(21583,\cdot)\) \(\chi_{243675}(22267,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1140})$
Fixed field: Number field defined by a degree 1140 polynomial (not computed)

Values on generators

\((36101,77977,129601)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{11}{20}\right),e\left(\frac{27}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 243675 }(11323, a) \) \(1\)\(1\)\(e\left(\frac{677}{1140}\right)\)\(e\left(\frac{107}{570}\right)\)\(e\left(\frac{151}{228}\right)\)\(e\left(\frac{297}{380}\right)\)\(e\left(\frac{173}{285}\right)\)\(e\left(\frac{1003}{1140}\right)\)\(e\left(\frac{73}{285}\right)\)\(e\left(\frac{107}{285}\right)\)\(e\left(\frac{277}{380}\right)\)\(e\left(\frac{229}{1140}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 243675 }(11323,a) \;\) at \(\;a = \) e.g. 2