Properties

Label 243675.43
Modulus $243675$
Conductor $48735$
Order $684$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(684))
 
M = H._module
 
chi = DirichletCharacter(H, M([152,513,104]))
 
pari: [g,chi] = znchar(Mod(43,243675))
 

Basic properties

Modulus: \(243675\)
Conductor: \(48735\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(684\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{48735}(43,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.yv

\(\chi_{243675}(43,\cdot)\) \(\chi_{243675}(682,\cdot)\) \(\chi_{243675}(1582,\cdot)\) \(\chi_{243675}(6343,\cdot)\) \(\chi_{243675}(7882,\cdot)\) \(\chi_{243675}(8293,\cdot)\) \(\chi_{243675}(8518,\cdot)\) \(\chi_{243675}(9832,\cdot)\) \(\chi_{243675}(10057,\cdot)\) \(\chi_{243675}(10093,\cdot)\) \(\chi_{243675}(11632,\cdot)\) \(\chi_{243675}(11968,\cdot)\) \(\chi_{243675}(12868,\cdot)\) \(\chi_{243675}(13507,\cdot)\) \(\chi_{243675}(14407,\cdot)\) \(\chi_{243675}(19168,\cdot)\) \(\chi_{243675}(20707,\cdot)\) \(\chi_{243675}(21118,\cdot)\) \(\chi_{243675}(21343,\cdot)\) \(\chi_{243675}(22657,\cdot)\) \(\chi_{243675}(22882,\cdot)\) \(\chi_{243675}(22918,\cdot)\) \(\chi_{243675}(24457,\cdot)\) \(\chi_{243675}(26332,\cdot)\) \(\chi_{243675}(27232,\cdot)\) \(\chi_{243675}(31993,\cdot)\) \(\chi_{243675}(33532,\cdot)\) \(\chi_{243675}(33943,\cdot)\) \(\chi_{243675}(35482,\cdot)\) \(\chi_{243675}(35707,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{684})$
Fixed field: Number field defined by a degree 684 polynomial (not computed)

Values on generators

\((36101,77977,129601)\) → \((e\left(\frac{2}{9}\right),-i,e\left(\frac{26}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 243675 }(43, a) \) \(-1\)\(1\)\(e\left(\frac{85}{684}\right)\)\(e\left(\frac{85}{342}\right)\)\(e\left(\frac{77}{684}\right)\)\(e\left(\frac{85}{228}\right)\)\(e\left(\frac{68}{171}\right)\)\(e\left(\frac{35}{684}\right)\)\(e\left(\frac{9}{38}\right)\)\(e\left(\frac{85}{171}\right)\)\(e\left(\frac{305}{684}\right)\)\(e\left(\frac{119}{228}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 243675 }(43,a) \;\) at \(\;a = \) e.g. 2