from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243675, base_ring=CyclotomicField(1710))
M = H._module
chi = DirichletCharacter(H, M([95,684,765]))
pari: [g,chi] = znchar(Mod(56,243675))
χ243675(56,⋅)
χ243675(911,⋅)
χ243675(1481,⋅)
χ243675(1766,⋅)
χ243675(2336,⋅)
χ243675(2621,⋅)
χ243675(3191,⋅)
χ243675(4046,⋅)
χ243675(5186,⋅)
χ243675(5756,⋅)
χ243675(6041,⋅)
χ243675(6611,⋅)
χ243675(6896,⋅)
χ243675(7466,⋅)
χ243675(8321,⋅)
χ243675(8606,⋅)
χ243675(9461,⋅)
χ243675(10031,⋅)
χ243675(10316,⋅)
χ243675(10886,⋅)
χ243675(11171,⋅)
χ243675(11741,⋅)
χ243675(12596,⋅)
χ243675(12881,⋅)
χ243675(13736,⋅)
χ243675(14306,⋅)
χ243675(14591,⋅)
χ243675(15446,⋅)
χ243675(16016,⋅)
χ243675(16871,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(36101,77977,129601) → (e(181),e(52),e(3817))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 22 |
χ243675(56,a) |
1 | 1 | e(855772) | e(855689) | e(171170) | e(285202) | e(17101289) | e(1710391) | e(855767) | e(855523) | e(57079) | e(17101123) |