Properties

Label 243675.56
Modulus $243675$
Conductor $243675$
Order $1710$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(1710))
 
M = H._module
 
chi = DirichletCharacter(H, M([95,684,765]))
 
pari: [g,chi] = znchar(Mod(56,243675))
 

Basic properties

Modulus: \(243675\)
Conductor: \(243675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1710\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.bbn

\(\chi_{243675}(56,\cdot)\) \(\chi_{243675}(911,\cdot)\) \(\chi_{243675}(1481,\cdot)\) \(\chi_{243675}(1766,\cdot)\) \(\chi_{243675}(2336,\cdot)\) \(\chi_{243675}(2621,\cdot)\) \(\chi_{243675}(3191,\cdot)\) \(\chi_{243675}(4046,\cdot)\) \(\chi_{243675}(5186,\cdot)\) \(\chi_{243675}(5756,\cdot)\) \(\chi_{243675}(6041,\cdot)\) \(\chi_{243675}(6611,\cdot)\) \(\chi_{243675}(6896,\cdot)\) \(\chi_{243675}(7466,\cdot)\) \(\chi_{243675}(8321,\cdot)\) \(\chi_{243675}(8606,\cdot)\) \(\chi_{243675}(9461,\cdot)\) \(\chi_{243675}(10031,\cdot)\) \(\chi_{243675}(10316,\cdot)\) \(\chi_{243675}(10886,\cdot)\) \(\chi_{243675}(11171,\cdot)\) \(\chi_{243675}(11741,\cdot)\) \(\chi_{243675}(12596,\cdot)\) \(\chi_{243675}(12881,\cdot)\) \(\chi_{243675}(13736,\cdot)\) \(\chi_{243675}(14306,\cdot)\) \(\chi_{243675}(14591,\cdot)\) \(\chi_{243675}(15446,\cdot)\) \(\chi_{243675}(16016,\cdot)\) \(\chi_{243675}(16871,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{855})$
Fixed field: Number field defined by a degree 1710 polynomial (not computed)

Values on generators

\((36101,77977,129601)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{2}{5}\right),e\left(\frac{17}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 243675 }(56, a) \) \(1\)\(1\)\(e\left(\frac{772}{855}\right)\)\(e\left(\frac{689}{855}\right)\)\(e\left(\frac{170}{171}\right)\)\(e\left(\frac{202}{285}\right)\)\(e\left(\frac{1289}{1710}\right)\)\(e\left(\frac{391}{1710}\right)\)\(e\left(\frac{767}{855}\right)\)\(e\left(\frac{523}{855}\right)\)\(e\left(\frac{79}{570}\right)\)\(e\left(\frac{1123}{1710}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 243675 }(56,a) \;\) at \(\;a = \) e.g. 2