Properties

Label 243675.56
Modulus 243675243675
Conductor 243675243675
Order 17101710
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(1710))
 
M = H._module
 
chi = DirichletCharacter(H, M([95,684,765]))
 
pari: [g,chi] = znchar(Mod(56,243675))
 

Basic properties

Modulus: 243675243675
Conductor: 243675243675
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 17101710
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243675.bbn

χ243675(56,)\chi_{243675}(56,\cdot) χ243675(911,)\chi_{243675}(911,\cdot) χ243675(1481,)\chi_{243675}(1481,\cdot) χ243675(1766,)\chi_{243675}(1766,\cdot) χ243675(2336,)\chi_{243675}(2336,\cdot) χ243675(2621,)\chi_{243675}(2621,\cdot) χ243675(3191,)\chi_{243675}(3191,\cdot) χ243675(4046,)\chi_{243675}(4046,\cdot) χ243675(5186,)\chi_{243675}(5186,\cdot) χ243675(5756,)\chi_{243675}(5756,\cdot) χ243675(6041,)\chi_{243675}(6041,\cdot) χ243675(6611,)\chi_{243675}(6611,\cdot) χ243675(6896,)\chi_{243675}(6896,\cdot) χ243675(7466,)\chi_{243675}(7466,\cdot) χ243675(8321,)\chi_{243675}(8321,\cdot) χ243675(8606,)\chi_{243675}(8606,\cdot) χ243675(9461,)\chi_{243675}(9461,\cdot) χ243675(10031,)\chi_{243675}(10031,\cdot) χ243675(10316,)\chi_{243675}(10316,\cdot) χ243675(10886,)\chi_{243675}(10886,\cdot) χ243675(11171,)\chi_{243675}(11171,\cdot) χ243675(11741,)\chi_{243675}(11741,\cdot) χ243675(12596,)\chi_{243675}(12596,\cdot) χ243675(12881,)\chi_{243675}(12881,\cdot) χ243675(13736,)\chi_{243675}(13736,\cdot) χ243675(14306,)\chi_{243675}(14306,\cdot) χ243675(14591,)\chi_{243675}(14591,\cdot) χ243675(15446,)\chi_{243675}(15446,\cdot) χ243675(16016,)\chi_{243675}(16016,\cdot) χ243675(16871,)\chi_{243675}(16871,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ855)\Q(\zeta_{855})
Fixed field: Number field defined by a degree 1710 polynomial (not computed)

Values on generators

(36101,77977,129601)(36101,77977,129601)(e(118),e(25),e(1738))(e\left(\frac{1}{18}\right),e\left(\frac{2}{5}\right),e\left(\frac{17}{38}\right))

First values

aa 1-11122447788111113131414161617172222
χ243675(56,a) \chi_{ 243675 }(56, a) 1111e(772855)e\left(\frac{772}{855}\right)e(689855)e\left(\frac{689}{855}\right)e(170171)e\left(\frac{170}{171}\right)e(202285)e\left(\frac{202}{285}\right)e(12891710)e\left(\frac{1289}{1710}\right)e(3911710)e\left(\frac{391}{1710}\right)e(767855)e\left(\frac{767}{855}\right)e(523855)e\left(\frac{523}{855}\right)e(79570)e\left(\frac{79}{570}\right)e(11231710)e\left(\frac{1123}{1710}\right)
sage: chi.jacobi_sum(n)
 
χ243675(56,a)   \chi_{ 243675 }(56,a) \; at   a=\;a = e.g. 2