Properties

Label 243675.bey
Modulus 243675243675
Conductor 2707527075
Order 34203420
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(3420))
 
M = H._module
 
chi = DirichletCharacter(H, M([1710,1197,830]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(53,243675))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 243675243675
Conductor: 2707527075
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 34203420
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 27075.fn
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ3420)\Q(\zeta_{3420})
Fixed field: Number field defined by a degree 3420 polynomial (not computed)

First 4 of 864 characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 2222
χ243675(53,)\chi_{243675}(53,\cdot) 1-1 11 e(3173420)e\left(\frac{317}{3420}\right) e(3171710)e\left(\frac{317}{1710}\right) e(35228)e\left(\frac{35}{228}\right) e(3171140)e\left(\frac{317}{1140}\right) e(487570)e\left(\frac{487}{570}\right) e(16933420)e\left(\frac{1693}{3420}\right) e(4211710)e\left(\frac{421}{1710}\right) e(317855)e\left(\frac{317}{855}\right) e(30713420)e\left(\frac{3071}{3420}\right) e(32393420)e\left(\frac{3239}{3420}\right)
χ243675(242,)\chi_{243675}(242,\cdot) 1-1 11 e(25633420)e\left(\frac{2563}{3420}\right) e(8531710)e\left(\frac{853}{1710}\right) e(37228)e\left(\frac{37}{228}\right) e(2831140)e\left(\frac{283}{1140}\right) e(23570)e\left(\frac{23}{570}\right) e(19073420)e\left(\frac{1907}{3420}\right) e(15591710)e\left(\frac{1559}{1710}\right) e(853855)e\left(\frac{853}{855}\right) e(14293420)e\left(\frac{1429}{3420}\right) e(27013420)e\left(\frac{2701}{3420}\right)
χ243675(458,)\chi_{243675}(458,\cdot) 1-1 11 e(29533420)e\left(\frac{2953}{3420}\right) e(12431710)e\left(\frac{1243}{1710}\right) e(175228)e\left(\frac{175}{228}\right) e(6731140)e\left(\frac{673}{1140}\right) e(383570)e\left(\frac{383}{570}\right) e(2573420)e\left(\frac{257}{3420}\right) e(10791710)e\left(\frac{1079}{1710}\right) e(388855)e\left(\frac{388}{855}\right) e(23593420)e\left(\frac{2359}{3420}\right) e(18313420)e\left(\frac{1831}{3420}\right)
χ243675(998,)\chi_{243675}(998,\cdot) 1-1 11 e(30413420)e\left(\frac{3041}{3420}\right) e(13311710)e\left(\frac{1331}{1710}\right) e(143228)e\left(\frac{143}{228}\right) e(7611140)e\left(\frac{761}{1140}\right) e(511570)e\left(\frac{511}{570}\right) e(18493420)e\left(\frac{1849}{3420}\right) e(8831710)e\left(\frac{883}{1710}\right) e(476855)e\left(\frac{476}{855}\right) e(10433420)e\left(\frac{1043}{3420}\right) e(26873420)e\left(\frac{2687}{3420}\right)