Properties

Label 243675.bey
Modulus $243675$
Conductor $27075$
Order $3420$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243675, base_ring=CyclotomicField(3420))
 
M = H._module
 
chi = DirichletCharacter(H, M([1710,1197,830]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(53,243675))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(243675\)
Conductor: \(27075\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3420\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 27075.fn
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{3420})$
Fixed field: Number field defined by a degree 3420 polynomial (not computed)

First 4 of 864 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{243675}(53,\cdot)\) \(-1\) \(1\) \(e\left(\frac{317}{3420}\right)\) \(e\left(\frac{317}{1710}\right)\) \(e\left(\frac{35}{228}\right)\) \(e\left(\frac{317}{1140}\right)\) \(e\left(\frac{487}{570}\right)\) \(e\left(\frac{1693}{3420}\right)\) \(e\left(\frac{421}{1710}\right)\) \(e\left(\frac{317}{855}\right)\) \(e\left(\frac{3071}{3420}\right)\) \(e\left(\frac{3239}{3420}\right)\)
\(\chi_{243675}(242,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2563}{3420}\right)\) \(e\left(\frac{853}{1710}\right)\) \(e\left(\frac{37}{228}\right)\) \(e\left(\frac{283}{1140}\right)\) \(e\left(\frac{23}{570}\right)\) \(e\left(\frac{1907}{3420}\right)\) \(e\left(\frac{1559}{1710}\right)\) \(e\left(\frac{853}{855}\right)\) \(e\left(\frac{1429}{3420}\right)\) \(e\left(\frac{2701}{3420}\right)\)
\(\chi_{243675}(458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2953}{3420}\right)\) \(e\left(\frac{1243}{1710}\right)\) \(e\left(\frac{175}{228}\right)\) \(e\left(\frac{673}{1140}\right)\) \(e\left(\frac{383}{570}\right)\) \(e\left(\frac{257}{3420}\right)\) \(e\left(\frac{1079}{1710}\right)\) \(e\left(\frac{388}{855}\right)\) \(e\left(\frac{2359}{3420}\right)\) \(e\left(\frac{1831}{3420}\right)\)
\(\chi_{243675}(998,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3041}{3420}\right)\) \(e\left(\frac{1331}{1710}\right)\) \(e\left(\frac{143}{228}\right)\) \(e\left(\frac{761}{1140}\right)\) \(e\left(\frac{511}{570}\right)\) \(e\left(\frac{1849}{3420}\right)\) \(e\left(\frac{883}{1710}\right)\) \(e\left(\frac{476}{855}\right)\) \(e\left(\frac{1043}{3420}\right)\) \(e\left(\frac{2687}{3420}\right)\)