sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(247, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([21,26]))
pari:[g,chi] = znchar(Mod(193,247))
Modulus: | 247 | |
Conductor: | 247 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ247(2,⋅)
χ247(32,⋅)
χ247(41,⋅)
χ247(72,⋅)
χ247(110,⋅)
χ247(124,⋅)
χ247(128,⋅)
χ247(154,⋅)
χ247(162,⋅)
χ247(193,⋅)
χ247(223,⋅)
χ247(241,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(210,40) → (e(127),e(1813))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ247(193,a) |
1 | 1 | e(3611) | e(1813) | e(1811) | e(3629) | e(361) | −i | e(1211) | e(94) | e(91) | −i |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)