Properties

Label 2475.1646
Modulus $2475$
Conductor $825$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2475, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,6,7]))
 
pari: [g,chi] = znchar(Mod(1646,2475))
 

Basic properties

Modulus: \(2475\)
Conductor: \(825\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{825}(821,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2475.br

\(\chi_{2475}(116,\cdot)\) \(\chi_{2475}(206,\cdot)\) \(\chi_{2475}(1646,\cdot)\) \(\chi_{2475}(2411,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.87430006242828369140625.2

Values on generators

\((551,2377,2026)\) → \((-1,e\left(\frac{3}{5}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 2475 }(1646, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2475 }(1646,a) \;\) at \(\;a = \) e.g. 2