Properties

Label 25.9
Modulus 2525
Conductor 2525
Order 1010
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(9,25))
 

Basic properties

Modulus: 2525
Conductor: 2525
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 25.e

χ25(4,)\chi_{25}(4,\cdot) χ25(9,)\chi_{25}(9,\cdot) χ25(14,)\chi_{25}(14,\cdot) χ25(19,)\chi_{25}(19,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: Q(ζ25)+\Q(\zeta_{25})^+

Values on generators

22e(710)e\left(\frac{7}{10}\right)

Values

aa 1-11122334466778899111112121313
χ25(9,a) \chi_{ 25 }(9, a) 1111e(710)e\left(\frac{7}{10}\right)e(910)e\left(\frac{9}{10}\right)e(25)e\left(\frac{2}{5}\right)e(35)e\left(\frac{3}{5}\right)1-1e(110)e\left(\frac{1}{10}\right)e(45)e\left(\frac{4}{5}\right)e(15)e\left(\frac{1}{5}\right)e(310)e\left(\frac{3}{10}\right)e(310)e\left(\frac{3}{10}\right)
sage: chi.jacobi_sum(n)
 
χ25(9,a)   \chi_{ 25 }(9,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ25(9,))   \tau_{ a }( \chi_{ 25 }(9,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ25(9,),χ25(n,))   J(\chi_{ 25 }(9,·),\chi_{ 25 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ25(9,))  K(a,b,\chi_{ 25 }(9,·)) \; at   a,b=\; a,b = e.g. 1,2