from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2509, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([128,169]))
pari: [g,chi] = znchar(Mod(1010,2509))
χ2509(22,⋅)
χ2509(146,⋅)
χ2509(152,⋅)
χ2509(159,⋅)
χ2509(178,⋅)
χ2509(237,⋅)
χ2509(308,⋅)
χ2509(360,⋅)
χ2509(412,⋅)
χ2509(464,⋅)
χ2509(497,⋅)
χ2509(549,⋅)
χ2509(594,⋅)
χ2509(620,⋅)
χ2509(640,⋅)
χ2509(692,⋅)
χ2509(750,⋅)
χ2509(789,⋅)
χ2509(809,⋅)
χ2509(874,⋅)
χ2509(913,⋅)
χ2509(984,⋅)
χ2509(1010,⋅)
χ2509(1017,⋅)
χ2509(1023,⋅)
χ2509(1056,⋅)
χ2509(1088,⋅)
χ2509(1101,⋅)
χ2509(1121,⋅)
χ2509(1153,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1159,391) → (e(32),e(192169))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2509(1010,a) |
−1 | 1 | e(3219) | e(4829) | e(163) | e(192169) | e(9619) | e(87) | e(3225) | e(245) | e(19291) | e(192143) |