Properties

Label 2527.1084
Modulus 25272527
Conductor 77
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0]))
 
pari: [g,chi] = znchar(Mod(1084,2527))
 

Basic properties

Modulus: 25272527
Conductor: 77
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ7(6,)\chi_{7}(6,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2527.d

χ2527(1084,)\chi_{2527}(1084,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(7)\Q(\sqrt{-7})

Values on generators

(1445,1807)(1445,1807)(1,1)(-1,1)

First values

aa 1-11122334455668899101011111212
χ2527(1084,a) \chi_{ 2527 }(1084, a) 1-111111-1111-11-111111-1111-1
sage: chi.jacobi_sum(n)
 
χ2527(1084,a)   \chi_{ 2527 }(1084,a) \; at   a=\;a = e.g. 2