sage: H = DirichletGroup(253)
pari: g = idealstar(,253,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 220 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{110}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{253}(24,\cdot)$, $\chi_{253}(166,\cdot)$ |
First 32 of 220 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{253}(1,\cdot)\) | 253.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{253}(2,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{253}(3,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{253}(4,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{253}(5,\cdot)\) | 253.p | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) |
\(\chi_{253}(6,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) |
\(\chi_{253}(7,\cdot)\) | 253.n | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
\(\chi_{253}(8,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{253}(9,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{253}(10,\cdot)\) | 253.l | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{253}(12,\cdot)\) | 253.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{253}(13,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{39}{110}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{253}(14,\cdot)\) | 253.p | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{253}(15,\cdot)\) | 253.p | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{63}{110}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{253}(16,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
\(\chi_{253}(17,\cdot)\) | 253.n | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{101}{110}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) |
\(\chi_{253}(18,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) |
\(\chi_{253}(19,\cdot)\) | 253.n | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{97}{110}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{253}(20,\cdot)\) | 253.p | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{253}(21,\cdot)\) | 253.l | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{253}(24,\cdot)\) | 253.g | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-1\) | \(1\) |
\(\chi_{253}(25,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{253}(26,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{253}(27,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{253}(28,\cdot)\) | 253.n | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{101}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) |
\(\chi_{253}(29,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{110}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) |
\(\chi_{253}(30,\cdot)\) | 253.n | 110 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{27}{110}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
\(\chi_{253}(31,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{253}(32,\cdot)\) | 253.k | 22 | yes | \(-1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{253}(34,\cdot)\) | 253.j | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{253}(35,\cdot)\) | 253.o | 110 | yes | \(-1\) | \(1\) | \(e\left(\frac{101}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{253}(36,\cdot)\) | 253.m | 55 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) |