Properties

Modulus $253$
Structure \(C_{2}\times C_{110}\)
Order $220$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(253)
 
pari: g = idealstar(,253,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 220
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{110}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{253}(24,\cdot)$, $\chi_{253}(166,\cdot)$

First 32 of 220 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{253}(1,\cdot)\) 253.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{253}(2,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{253}(3,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{253}(4,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{31}{55}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{253}(5,\cdot)\) 253.p 110 yes \(-1\) \(1\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{253}(6,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{253}(7,\cdot)\) 253.n 110 yes \(1\) \(1\) \(e\left(\frac{47}{110}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{253}(8,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{93}{110}\right)\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{31}{110}\right)\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{253}(9,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{253}(10,\cdot)\) 253.l 22 yes \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{253}(12,\cdot)\) 253.i 11 no \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{253}(13,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{39}{110}\right)\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{253}(14,\cdot)\) 253.p 110 yes \(-1\) \(1\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{23}{55}\right)\) \(e\left(\frac{17}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{81}{110}\right)\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{253}(15,\cdot)\) 253.p 110 yes \(-1\) \(1\) \(e\left(\frac{41}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{63}{110}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{253}(16,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{7}{55}\right)\) \(e\left(\frac{1}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{2}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{253}(17,\cdot)\) 253.n 110 yes \(1\) \(1\) \(e\left(\frac{59}{110}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{91}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{67}{110}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{253}(18,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{87}{110}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{13}{110}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{41}{110}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{253}(19,\cdot)\) 253.n 110 yes \(1\) \(1\) \(e\left(\frac{73}{110}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{97}{110}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{253}(20,\cdot)\) 253.p 110 yes \(-1\) \(1\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{69}{110}\right)\) \(e\left(\frac{27}{55}\right)\) \(e\left(\frac{57}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{253}(21,\cdot)\) 253.l 22 yes \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{253}(24,\cdot)\) 253.g 10 no \(-1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(1\)
\(\chi_{253}(25,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{52}{55}\right)\) \(e\left(\frac{39}{55}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{253}(26,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{13}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{49}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{53}{55}\right)\) \(e\left(\frac{26}{55}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{253}(27,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{42}{55}\right)\) \(e\left(\frac{6}{55}\right)\) \(e\left(\frac{29}{55}\right)\) \(e\left(\frac{43}{55}\right)\) \(e\left(\frac{48}{55}\right)\) \(e\left(\frac{14}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{253}(28,\cdot)\) 253.n 110 yes \(1\) \(1\) \(e\left(\frac{109}{110}\right)\) \(e\left(\frac{51}{55}\right)\) \(e\left(\frac{54}{55}\right)\) \(e\left(\frac{71}{110}\right)\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{47}{55}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{253}(29,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{37}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{34}{55}\right)\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{49}{110}\right)\) \(e\left(\frac{1}{110}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{253}(30,\cdot)\) 253.n 110 yes \(1\) \(1\) \(e\left(\frac{3}{110}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{3}{55}\right)\) \(e\left(\frac{7}{110}\right)\) \(e\left(\frac{27}{110}\right)\) \(e\left(\frac{28}{55}\right)\) \(e\left(\frac{9}{110}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{253}(31,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{16}{55}\right)\) \(e\left(\frac{37}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{21}{55}\right)\) \(e\left(\frac{24}{55}\right)\) \(e\left(\frac{18}{55}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{253}(32,\cdot)\) 253.k 22 yes \(-1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{253}(34,\cdot)\) 253.j 22 no \(-1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{253}(35,\cdot)\) 253.o 110 yes \(-1\) \(1\) \(e\left(\frac{101}{110}\right)\) \(e\left(\frac{19}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{17}{55}\right)\) \(e\left(\frac{29}{110}\right)\) \(e\left(\frac{107}{110}\right)\) \(e\left(\frac{83}{110}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{253}(36,\cdot)\) 253.m 55 yes \(1\) \(1\) \(e\left(\frac{4}{55}\right)\) \(e\left(\frac{32}{55}\right)\) \(e\left(\frac{8}{55}\right)\) \(e\left(\frac{46}{55}\right)\) \(e\left(\frac{36}{55}\right)\) \(e\left(\frac{38}{55}\right)\) \(e\left(\frac{12}{55}\right)\) \(e\left(\frac{9}{55}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\)
Click here to search among the remaining 188 characters.