Properties

Label 253.160
Modulus 253253
Conductor 253253
Order 1010
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,5]))
 
pari: [g,chi] = znchar(Mod(160,253))
 

Basic properties

Modulus: 253253
Conductor: 253253
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.h

χ253(68,)\chi_{253}(68,\cdot) χ253(160,)\chi_{253}(160,\cdot) χ253(183,)\chi_{253}(183,\cdot) χ253(206,)\chi_{253}(206,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.15176560115334013.1

Values on generators

(24,166)(24,166)(e(910),1)(e\left(\frac{9}{10}\right),-1)

First values

aa 1-111223344556677889910101212
χ253(160,a) \chi_{ 253 }(160, a) 1111e(910)e\left(\frac{9}{10}\right)e(15)e\left(\frac{1}{5}\right)e(45)e\left(\frac{4}{5}\right)e(110)e\left(\frac{1}{10}\right)e(110)e\left(\frac{1}{10}\right)e(45)e\left(\frac{4}{5}\right)e(710)e\left(\frac{7}{10}\right)e(25)e\left(\frac{2}{5}\right)1111
sage: chi.jacobi_sum(n)
 
χ253(160,a)   \chi_{ 253 }(160,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ253(160,))   \tau_{ a }( \chi_{ 253 }(160,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ253(160,),χ253(n,))   J(\chi_{ 253 }(160,·),\chi_{ 253 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ253(160,))  K(a,b,\chi_{ 253 }(160,·)) \; at   a,b=\; a,b = e.g. 1,2