Properties

Label 253.160
Modulus $253$
Conductor $253$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,5]))
 
pari: [g,chi] = znchar(Mod(160,253))
 

Basic properties

Modulus: \(253\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.h

\(\chi_{253}(68,\cdot)\) \(\chi_{253}(160,\cdot)\) \(\chi_{253}(183,\cdot)\) \(\chi_{253}(206,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.15176560115334013.1

Values on generators

\((24,166)\) → \((e\left(\frac{9}{10}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 253 }(160, a) \) \(1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 253 }(160,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 253 }(160,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 253 }(160,·),\chi_{ 253 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 253 }(160,·)) \;\) at \(\; a,b = \) e.g. 1,2