Properties

Label 253.208
Modulus 253253
Conductor 1111
Order 22
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0]))
 
pari: [g,chi] = znchar(Mod(208,253))
 

Basic properties

Modulus: 253253
Conductor: 1111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ11(10,)\chi_{11}(10,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.c

χ253(208,)\chi_{253}(208,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(11)\Q(\sqrt{-11})

Values on generators

(24,166)(24,166)(1,1)(-1,1)

First values

aa 1-111223344556677889910101212
χ253(208,a) \chi_{ 253 }(208, a) 1-1111-11111111-11-11-1111-111
sage: chi.jacobi_sum(n)
 
χ253(208,a)   \chi_{ 253 }(208,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ253(208,))   \tau_{ a }( \chi_{ 253 }(208,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ253(208,),χ253(n,))   J(\chi_{ 253 }(208,·),\chi_{ 253 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ253(208,))  K(a,b,\chi_{ 253 }(208,·)) \; at   a,b=\; a,b = e.g. 1,2