Properties

Label 2535.2239
Modulus $2535$
Conductor $845$
Order $78$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,39,38]))
 
pari: [g,chi] = znchar(Mod(2239,2535))
 

Basic properties

Modulus: \(2535\)
Conductor: \(845\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{845}(549,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2535.ck

\(\chi_{2535}(94,\cdot)\) \(\chi_{2535}(139,\cdot)\) \(\chi_{2535}(289,\cdot)\) \(\chi_{2535}(334,\cdot)\) \(\chi_{2535}(679,\cdot)\) \(\chi_{2535}(724,\cdot)\) \(\chi_{2535}(874,\cdot)\) \(\chi_{2535}(919,\cdot)\) \(\chi_{2535}(1069,\cdot)\) \(\chi_{2535}(1114,\cdot)\) \(\chi_{2535}(1264,\cdot)\) \(\chi_{2535}(1309,\cdot)\) \(\chi_{2535}(1459,\cdot)\) \(\chi_{2535}(1504,\cdot)\) \(\chi_{2535}(1654,\cdot)\) \(\chi_{2535}(1699,\cdot)\) \(\chi_{2535}(1849,\cdot)\) \(\chi_{2535}(1894,\cdot)\) \(\chi_{2535}(2044,\cdot)\) \(\chi_{2535}(2089,\cdot)\) \(\chi_{2535}(2239,\cdot)\) \(\chi_{2535}(2284,\cdot)\) \(\chi_{2535}(2434,\cdot)\) \(\chi_{2535}(2479,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((1691,1522,1861)\) → \((1,-1,e\left(\frac{19}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 2535 }(2239, a) \) \(1\)\(1\)\(e\left(\frac{77}{78}\right)\)\(e\left(\frac{38}{39}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{37}{39}\right)\)\(e\left(\frac{49}{78}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2535 }(2239,a) \;\) at \(\;a = \) e.g. 2