from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(254, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([6]))
pari: [g,chi] = znchar(Mod(191,254))
Basic properties
Modulus: | \(254\) | |
Conductor: | \(127\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(7\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{127}(64,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 254.e
\(\chi_{254}(129,\cdot)\) \(\chi_{254}(131,\cdot)\) \(\chi_{254}(135,\cdot)\) \(\chi_{254}(143,\cdot)\) \(\chi_{254}(159,\cdot)\) \(\chi_{254}(191,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{7})\) |
Fixed field: | 7.7.4195872914689.1 |
Values on generators
\(3\) → \(e\left(\frac{3}{7}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 254 }(191, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) | \(e\left(\frac{5}{7}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)