Properties

Label 254.191
Modulus 254254
Conductor 127127
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(254, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([6]))
 
pari: [g,chi] = znchar(Mod(191,254))
 

Basic properties

Modulus: 254254
Conductor: 127127
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ127(64,)\chi_{127}(64,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 254.e

χ254(129,)\chi_{254}(129,\cdot) χ254(131,)\chi_{254}(131,\cdot) χ254(135,)\chi_{254}(135,\cdot) χ254(143,)\chi_{254}(143,\cdot) χ254(159,)\chi_{254}(159,\cdot) χ254(191,)\chi_{254}(191,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.4195872914689.1

Values on generators

33e(37)e\left(\frac{3}{7}\right)

First values

aa 1-11133557799111113131515171719192121
χ254(191,a) \chi_{ 254 }(191, a) 1111e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)e(27)e\left(\frac{2}{7}\right)e(67)e\left(\frac{6}{7}\right)e(17)e\left(\frac{1}{7}\right)e(27)e\left(\frac{2}{7}\right)e(57)e\left(\frac{5}{7}\right)e(27)e\left(\frac{2}{7}\right)11e(57)e\left(\frac{5}{7}\right)
sage: chi.jacobi_sum(n)
 
χ254(191,a)   \chi_{ 254 }(191,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ254(191,))   \tau_{ a }( \chi_{ 254 }(191,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ254(191,),χ254(n,))   J(\chi_{ 254 }(191,·),\chi_{ 254 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ254(191,))  K(a,b,\chi_{ 254 }(191,·)) \; at   a,b=\; a,b = e.g. 1,2