Properties

Label 2548.2081
Modulus $2548$
Conductor $49$
Order $21$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,38,0]))
 
pari: [g,chi] = znchar(Mod(2081,2548))
 

Basic properties

Modulus: \(2548\)
Conductor: \(49\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{49}(23,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2548.cs

\(\chi_{2548}(53,\cdot)\) \(\chi_{2548}(261,\cdot)\) \(\chi_{2548}(417,\cdot)\) \(\chi_{2548}(625,\cdot)\) \(\chi_{2548}(781,\cdot)\) \(\chi_{2548}(989,\cdot)\) \(\chi_{2548}(1509,\cdot)\) \(\chi_{2548}(1717,\cdot)\) \(\chi_{2548}(1873,\cdot)\) \(\chi_{2548}(2081,\cdot)\) \(\chi_{2548}(2237,\cdot)\) \(\chi_{2548}(2445,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((1275,885,197)\) → \((1,e\left(\frac{19}{21}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2548 }(2081, a) \) \(1\)\(1\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{5}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2548 }(2081,a) \;\) at \(\;a = \) e.g. 2