from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,4,5]))
pari: [g,chi] = znchar(Mod(361,2548))
Basic properties
Modulus: | \(2548\) | |
Conductor: | \(91\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(6\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{91}(88,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2548.bq
\(\chi_{2548}(361,\cdot)\) \(\chi_{2548}(1941,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(\zeta_3)\) |
Fixed field: | 6.6.891474493.2 |
Values on generators
\((1275,885,197)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2548 }(361, a) \) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
sage: chi.jacobi_sum(n)