Properties

Label 2548.361
Modulus 25482548
Conductor 9191
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,5]))
 
pari: [g,chi] = znchar(Mod(361,2548))
 

Basic properties

Modulus: 25482548
Conductor: 9191
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ91(88,)\chi_{91}(88,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2548.bq

χ2548(361,)\chi_{2548}(361,\cdot) χ2548(1941,)\chi_{2548}(1941,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.891474493.2

Values on generators

(1275,885,197)(1275,885,197)(1,e(23),e(56))(1,e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right))

First values

aa 1-1113355991111151517171919232325252727
χ2548(361,a) \chi_{ 2548 }(361, a) 111111e(56)e\left(\frac{5}{6}\right)111-1e(56)e\left(\frac{5}{6}\right)e(13)e\left(\frac{1}{3}\right)1-1e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)11
sage: chi.jacobi_sum(n)
 
χ2548(361,a)   \chi_{ 2548 }(361,a) \; at   a=\;a = e.g. 2