Properties

Label 2548.361
Modulus $2548$
Conductor $91$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,4,5]))
 
pari: [g,chi] = znchar(Mod(361,2548))
 

Basic properties

Modulus: \(2548\)
Conductor: \(91\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{91}(88,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2548.bq

\(\chi_{2548}(361,\cdot)\) \(\chi_{2548}(1941,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 6.6.891474493.2

Values on generators

\((1275,885,197)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 2548 }(361, a) \) \(1\)\(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(1\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2548 }(361,a) \;\) at \(\;a = \) e.g. 2