Properties

Label 2548.cb
Modulus 25482548
Conductor 364364
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,4,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(275,2548))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 25482548
Conductor: 364364
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 364.ca
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.42317611137863236145152.1

Characters in Galois orbit

Character 1-1 11 33 55 99 1111 1515 1717 1919 2323 2525 2727
χ2548(275,)\chi_{2548}(275,\cdot) 11 11 e(16)e\left(\frac{1}{6}\right) e(512)e\left(\frac{5}{12}\right) e(13)e\left(\frac{1}{3}\right) e(512)e\left(\frac{5}{12}\right) e(712)e\left(\frac{7}{12}\right) 1-1 e(712)e\left(\frac{7}{12}\right) 11 e(56)e\left(\frac{5}{6}\right) 1-1
χ2548(851,)\chi_{2548}(851,\cdot) 11 11 e(56)e\left(\frac{5}{6}\right) e(112)e\left(\frac{1}{12}\right) e(23)e\left(\frac{2}{3}\right) e(112)e\left(\frac{1}{12}\right) e(1112)e\left(\frac{11}{12}\right) 1-1 e(1112)e\left(\frac{11}{12}\right) 11 e(16)e\left(\frac{1}{6}\right) 1-1
χ2548(1047,)\chi_{2548}(1047,\cdot) 11 11 e(56)e\left(\frac{5}{6}\right) e(712)e\left(\frac{7}{12}\right) e(23)e\left(\frac{2}{3}\right) e(712)e\left(\frac{7}{12}\right) e(512)e\left(\frac{5}{12}\right) 1-1 e(512)e\left(\frac{5}{12}\right) 11 e(16)e\left(\frac{1}{6}\right) 1-1
χ2548(2039,)\chi_{2548}(2039,\cdot) 11 11 e(16)e\left(\frac{1}{6}\right) e(1112)e\left(\frac{11}{12}\right) e(13)e\left(\frac{1}{3}\right) e(1112)e\left(\frac{11}{12}\right) e(112)e\left(\frac{1}{12}\right) 1-1 e(112)e\left(\frac{1}{12}\right) 11 e(56)e\left(\frac{5}{6}\right) 1-1