Properties

Label 2557.14
Modulus $2557$
Conductor $2557$
Order $284$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(284))
 
M = H._module
 
chi = DirichletCharacter(H, M([227]))
 
pari: [g,chi] = znchar(Mod(14,2557))
 

Basic properties

Modulus: \(2557\)
Conductor: \(2557\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(284\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.m

\(\chi_{2557}(14,\cdot)\) \(\chi_{2557}(18,\cdot)\) \(\chi_{2557}(26,\cdot)\) \(\chi_{2557}(50,\cdot)\) \(\chi_{2557}(55,\cdot)\) \(\chi_{2557}(79,\cdot)\) \(\chi_{2557}(93,\cdot)\) \(\chi_{2557}(95,\cdot)\) \(\chi_{2557}(96,\cdot)\) \(\chi_{2557}(142,\cdot)\) \(\chi_{2557}(145,\cdot)\) \(\chi_{2557}(170,\cdot)\) \(\chi_{2557}(185,\cdot)\) \(\chi_{2557}(187,\cdot)\) \(\chi_{2557}(233,\cdot)\) \(\chi_{2557}(293,\cdot)\) \(\chi_{2557}(295,\cdot)\) \(\chi_{2557}(301,\cdot)\) \(\chi_{2557}(317,\cdot)\) \(\chi_{2557}(323,\cdot)\) \(\chi_{2557}(329,\cdot)\) \(\chi_{2557}(358,\cdot)\) \(\chi_{2557}(387,\cdot)\) \(\chi_{2557}(420,\cdot)\) \(\chi_{2557}(423,\cdot)\) \(\chi_{2557}(428,\cdot)\) \(\chi_{2557}(431,\cdot)\) \(\chi_{2557}(436,\cdot)\) \(\chi_{2557}(462,\cdot)\) \(\chi_{2557}(493,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{284})$
Fixed field: Number field defined by a degree 284 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{227}{284}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2557 }(14, a) \) \(-1\)\(1\)\(e\left(\frac{227}{284}\right)\)\(e\left(\frac{23}{71}\right)\)\(e\left(\frac{85}{142}\right)\)\(e\left(\frac{37}{284}\right)\)\(e\left(\frac{35}{284}\right)\)\(e\left(\frac{23}{142}\right)\)\(e\left(\frac{113}{284}\right)\)\(e\left(\frac{46}{71}\right)\)\(e\left(\frac{66}{71}\right)\)\(e\left(\frac{43}{71}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2557 }(14,a) \;\) at \(\;a = \) e.g. 2