Properties

Label 2557.27
Modulus 25572557
Conductor 25572557
Order 213213
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(426))
 
M = H._module
 
chi = DirichletCharacter(H, M([338]))
 
pari: [g,chi] = znchar(Mod(27,2557))
 

Basic properties

Modulus: 25572557
Conductor: 25572557
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 213213
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.l

χ2557(27,)\chi_{2557}(27,\cdot) χ2557(39,)\chi_{2557}(39,\cdot) χ2557(82,)\chi_{2557}(82,\cdot) χ2557(144,)\chi_{2557}(144,\cdot) χ2557(149,)\chi_{2557}(149,\cdot) χ2557(208,)\chi_{2557}(208,\cdot) χ2557(213,)\chi_{2557}(213,\cdot) χ2557(255,)\chi_{2557}(255,\cdot) χ2557(257,)\chi_{2557}(257,\cdot) χ2557(280,)\chi_{2557}(280,\cdot) χ2557(307,)\chi_{2557}(307,\cdot) χ2557(308,)\chi_{2557}(308,\cdot) χ2557(335,)\chi_{2557}(335,\cdot) χ2557(441,)\chi_{2557}(441,\cdot) χ2557(445,)\chi_{2557}(445,\cdot) χ2557(454,)\chi_{2557}(454,\cdot) χ2557(487,)\chi_{2557}(487,\cdot) χ2557(490,)\chi_{2557}(490,\cdot) χ2557(502,)\chi_{2557}(502,\cdot) χ2557(511,)\chi_{2557}(511,\cdot) χ2557(532,)\chi_{2557}(532,\cdot) χ2557(537,)\chi_{2557}(537,\cdot) χ2557(539,)\chi_{2557}(539,\cdot) χ2557(565,)\chi_{2557}(565,\cdot) χ2557(618,)\chi_{2557}(618,\cdot) χ2557(636,)\chi_{2557}(636,\cdot) χ2557(637,)\chi_{2557}(637,\cdot) χ2557(641,)\chi_{2557}(641,\cdot) χ2557(654,)\chi_{2557}(654,\cdot) χ2557(697,)\chi_{2557}(697,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ213)\Q(\zeta_{213})
Fixed field: Number field defined by a degree 213 polynomial (not computed)

Values on generators

22e(169213)e\left(\frac{169}{213}\right)

First values

aa 1-111223344556677889910101111
χ2557(27,a) \chi_{ 2557 }(27, a) 1111e(169213)e\left(\frac{169}{213}\right)e(76213)e\left(\frac{76}{213}\right)e(125213)e\left(\frac{125}{213}\right)e(46213)e\left(\frac{46}{213}\right)e(32213)e\left(\frac{32}{213}\right)e(38213)e\left(\frac{38}{213}\right)e(2771)e\left(\frac{27}{71}\right)e(152213)e\left(\frac{152}{213}\right)e(2213)e\left(\frac{2}{213}\right)e(68213)e\left(\frac{68}{213}\right)
sage: chi.jacobi_sum(n)
 
χ2557(27,a)   \chi_{ 2557 }(27,a) \; at   a=\;a = e.g. 2