Properties

Label 2557.27
Modulus $2557$
Conductor $2557$
Order $213$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(426))
 
M = H._module
 
chi = DirichletCharacter(H, M([338]))
 
pari: [g,chi] = znchar(Mod(27,2557))
 

Basic properties

Modulus: \(2557\)
Conductor: \(2557\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(213\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.l

\(\chi_{2557}(27,\cdot)\) \(\chi_{2557}(39,\cdot)\) \(\chi_{2557}(82,\cdot)\) \(\chi_{2557}(144,\cdot)\) \(\chi_{2557}(149,\cdot)\) \(\chi_{2557}(208,\cdot)\) \(\chi_{2557}(213,\cdot)\) \(\chi_{2557}(255,\cdot)\) \(\chi_{2557}(257,\cdot)\) \(\chi_{2557}(280,\cdot)\) \(\chi_{2557}(307,\cdot)\) \(\chi_{2557}(308,\cdot)\) \(\chi_{2557}(335,\cdot)\) \(\chi_{2557}(441,\cdot)\) \(\chi_{2557}(445,\cdot)\) \(\chi_{2557}(454,\cdot)\) \(\chi_{2557}(487,\cdot)\) \(\chi_{2557}(490,\cdot)\) \(\chi_{2557}(502,\cdot)\) \(\chi_{2557}(511,\cdot)\) \(\chi_{2557}(532,\cdot)\) \(\chi_{2557}(537,\cdot)\) \(\chi_{2557}(539,\cdot)\) \(\chi_{2557}(565,\cdot)\) \(\chi_{2557}(618,\cdot)\) \(\chi_{2557}(636,\cdot)\) \(\chi_{2557}(637,\cdot)\) \(\chi_{2557}(641,\cdot)\) \(\chi_{2557}(654,\cdot)\) \(\chi_{2557}(697,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{213})$
Fixed field: Number field defined by a degree 213 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{169}{213}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2557 }(27, a) \) \(1\)\(1\)\(e\left(\frac{169}{213}\right)\)\(e\left(\frac{76}{213}\right)\)\(e\left(\frac{125}{213}\right)\)\(e\left(\frac{46}{213}\right)\)\(e\left(\frac{32}{213}\right)\)\(e\left(\frac{38}{213}\right)\)\(e\left(\frac{27}{71}\right)\)\(e\left(\frac{152}{213}\right)\)\(e\left(\frac{2}{213}\right)\)\(e\left(\frac{68}{213}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2557 }(27,a) \;\) at \(\;a = \) e.g. 2