sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(426))
M = H._module
chi = DirichletCharacter(H, M([338]))
pari:[g,chi] = znchar(Mod(27,2557))
Modulus: | 2557 | |
Conductor: | 2557 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 213 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2557(27,⋅)
χ2557(39,⋅)
χ2557(82,⋅)
χ2557(144,⋅)
χ2557(149,⋅)
χ2557(208,⋅)
χ2557(213,⋅)
χ2557(255,⋅)
χ2557(257,⋅)
χ2557(280,⋅)
χ2557(307,⋅)
χ2557(308,⋅)
χ2557(335,⋅)
χ2557(441,⋅)
χ2557(445,⋅)
χ2557(454,⋅)
χ2557(487,⋅)
χ2557(490,⋅)
χ2557(502,⋅)
χ2557(511,⋅)
χ2557(532,⋅)
χ2557(537,⋅)
χ2557(539,⋅)
χ2557(565,⋅)
χ2557(618,⋅)
χ2557(636,⋅)
χ2557(637,⋅)
χ2557(641,⋅)
χ2557(654,⋅)
χ2557(697,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(213169)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(27,a) |
1 | 1 | e(213169) | e(21376) | e(213125) | e(21346) | e(21332) | e(21338) | e(7127) | e(213152) | e(2132) | e(21368) |
sage:chi.jacobi_sum(n)