Properties

Label 2557.38
Modulus 25572557
Conductor 25572557
Order 852852
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(852))
 
M = H._module
 
chi = DirichletCharacter(H, M([239]))
 
pari: [g,chi] = znchar(Mod(38,2557))
 

Basic properties

Modulus: 25572557
Conductor: 25572557
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 852852
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.p

χ2557(8,)\chi_{2557}(8,\cdot) χ2557(20,)\chi_{2557}(20,\cdot) χ2557(22,)\chi_{2557}(22,\cdot) χ2557(35,)\chi_{2557}(35,\cdot) χ2557(38,)\chi_{2557}(38,\cdot) χ2557(45,)\chi_{2557}(45,\cdot) χ2557(46,)\chi_{2557}(46,\cdot) χ2557(58,)\chi_{2557}(58,\cdot) χ2557(65,)\chi_{2557}(65,\cdot) χ2557(68,)\chi_{2557}(68,\cdot) χ2557(74,)\chi_{2557}(74,\cdot) χ2557(101,)\chi_{2557}(101,\cdot) χ2557(115,)\chi_{2557}(115,\cdot) χ2557(118,)\chi_{2557}(118,\cdot) χ2557(119,)\chi_{2557}(119,\cdot) χ2557(123,)\chi_{2557}(123,\cdot) χ2557(125,)\chi_{2557}(125,\cdot) χ2557(153,)\chi_{2557}(153,\cdot) χ2557(168,)\chi_{2557}(168,\cdot) χ2557(172,)\chi_{2557}(172,\cdot) χ2557(188,)\chi_{2557}(188,\cdot) χ2557(201,)\chi_{2557}(201,\cdot) χ2557(216,)\chi_{2557}(216,\cdot) χ2557(221,)\chi_{2557}(221,\cdot) χ2557(223,)\chi_{2557}(223,\cdot) χ2557(239,)\chi_{2557}(239,\cdot) χ2557(240,)\chi_{2557}(240,\cdot) χ2557(249,)\chi_{2557}(249,\cdot) χ2557(264,)\chi_{2557}(264,\cdot) χ2557(267,)\chi_{2557}(267,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ852)\Q(\zeta_{852})
Fixed field: Number field defined by a degree 852 polynomial (not computed)

Values on generators

22e(239852)e\left(\frac{239}{852}\right)

First values

aa 1-111223344556677889910101111
χ2557(38,a) \chi_{ 2557 }(38, a) 1-111e(239852)e\left(\frac{239}{852}\right)e(134213)e\left(\frac{134}{213}\right)e(239426)e\left(\frac{239}{426}\right)e(89852)e\left(\frac{89}{852}\right)e(775852)e\left(\frac{775}{852}\right)e(347426)e\left(\frac{347}{426}\right)e(239284)e\left(\frac{239}{284}\right)e(55213)e\left(\frac{55}{213}\right)e(82213)e\left(\frac{82}{213}\right)e(19213)e\left(\frac{19}{213}\right)
sage: chi.jacobi_sum(n)
 
χ2557(38,a)   \chi_{ 2557 }(38,a) \; at   a=\;a = e.g. 2