from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(852))
M = H._module
chi = DirichletCharacter(H, M([239]))
pari: [g,chi] = znchar(Mod(38,2557))
χ2557(8,⋅)
χ2557(20,⋅)
χ2557(22,⋅)
χ2557(35,⋅)
χ2557(38,⋅)
χ2557(45,⋅)
χ2557(46,⋅)
χ2557(58,⋅)
χ2557(65,⋅)
χ2557(68,⋅)
χ2557(74,⋅)
χ2557(101,⋅)
χ2557(115,⋅)
χ2557(118,⋅)
χ2557(119,⋅)
χ2557(123,⋅)
χ2557(125,⋅)
χ2557(153,⋅)
χ2557(168,⋅)
χ2557(172,⋅)
χ2557(188,⋅)
χ2557(201,⋅)
χ2557(216,⋅)
χ2557(221,⋅)
χ2557(223,⋅)
χ2557(239,⋅)
χ2557(240,⋅)
χ2557(249,⋅)
χ2557(264,⋅)
χ2557(267,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(852239)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(38,a) |
−1 | 1 | e(852239) | e(213134) | e(426239) | e(85289) | e(852775) | e(426347) | e(284239) | e(21355) | e(21382) | e(21319) |