Properties

Label 256.m
Modulus $256$
Conductor $256$
Order $64$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(64))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(5,256))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(256\)
Conductor: \(256\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(64\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{256}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{45}{64}\right)\)
\(\chi_{256}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{3}{64}\right)\)
\(\chi_{256}(21,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{41}{64}\right)\)
\(\chi_{256}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{31}{64}\right)\)
\(\chi_{256}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{37}{64}\right)\)
\(\chi_{256}(45,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{59}{64}\right)\)
\(\chi_{256}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{33}{64}\right)\)
\(\chi_{256}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{23}{64}\right)\)
\(\chi_{256}(69,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{29}{64}\right)\)
\(\chi_{256}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{51}{64}\right)\)
\(\chi_{256}(85,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{25}{64}\right)\)
\(\chi_{256}(93,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{15}{64}\right)\)
\(\chi_{256}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{21}{64}\right)\)
\(\chi_{256}(109,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{43}{64}\right)\)
\(\chi_{256}(117,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{17}{64}\right)\)
\(\chi_{256}(125,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{7}{64}\right)\)
\(\chi_{256}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{13}{64}\right)\)
\(\chi_{256}(141,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{35}{64}\right)\)
\(\chi_{256}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{9}{64}\right)\)
\(\chi_{256}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{63}{64}\right)\)
\(\chi_{256}(165,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{5}{64}\right)\)
\(\chi_{256}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{27}{64}\right)\)
\(\chi_{256}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{1}{64}\right)\)
\(\chi_{256}(189,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{55}{64}\right)\)
\(\chi_{256}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{61}{64}\right)\)
\(\chi_{256}(205,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{19}{64}\right)\)
\(\chi_{256}(213,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{57}{64}\right)\)
\(\chi_{256}(221,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{47}{64}\right)\)
\(\chi_{256}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{53}{64}\right)\)
\(\chi_{256}(237,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{11}{64}\right)\)
\(\chi_{256}(245,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{49}{64}\right)\)