from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(25920, base_ring=CyclotomicField(432))
M = H._module
chi = DirichletCharacter(H, M([216,135,128,108]))
pari: [g,chi] = znchar(Mod(21067,25920))
χ25920(187,⋅)
χ25920(403,⋅)
χ25920(427,⋅)
χ25920(643,⋅)
χ25920(907,⋅)
χ25920(1123,⋅)
χ25920(1147,⋅)
χ25920(1363,⋅)
χ25920(1627,⋅)
χ25920(1843,⋅)
χ25920(1867,⋅)
χ25920(2083,⋅)
χ25920(2347,⋅)
χ25920(2563,⋅)
χ25920(2587,⋅)
χ25920(2803,⋅)
χ25920(3067,⋅)
χ25920(3283,⋅)
χ25920(3307,⋅)
χ25920(3523,⋅)
χ25920(3787,⋅)
χ25920(4003,⋅)
χ25920(4027,⋅)
χ25920(4243,⋅)
χ25920(4507,⋅)
χ25920(4723,⋅)
χ25920(4747,⋅)
χ25920(4963,⋅)
χ25920(5227,⋅)
χ25920(5443,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,21061,6401,20737) → (−1,e(165),e(278),i)
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ25920(21067,a) |
1 | 1 | e(216133) | e(432395) | e(432349) | e(97) | e(14459) | e(216191) | e(432389) | e(2725) | e(14473) | e(21617) |