Properties

Label 25920.21067
Modulus 2592025920
Conductor 2592025920
Order 432432
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25920, base_ring=CyclotomicField(432))
 
M = H._module
 
chi = DirichletCharacter(H, M([216,135,128,108]))
 
pari: [g,chi] = znchar(Mod(21067,25920))
 

Basic properties

Modulus: 2592025920
Conductor: 2592025920
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 432432
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 25920.km

χ25920(187,)\chi_{25920}(187,\cdot) χ25920(403,)\chi_{25920}(403,\cdot) χ25920(427,)\chi_{25920}(427,\cdot) χ25920(643,)\chi_{25920}(643,\cdot) χ25920(907,)\chi_{25920}(907,\cdot) χ25920(1123,)\chi_{25920}(1123,\cdot) χ25920(1147,)\chi_{25920}(1147,\cdot) χ25920(1363,)\chi_{25920}(1363,\cdot) χ25920(1627,)\chi_{25920}(1627,\cdot) χ25920(1843,)\chi_{25920}(1843,\cdot) χ25920(1867,)\chi_{25920}(1867,\cdot) χ25920(2083,)\chi_{25920}(2083,\cdot) χ25920(2347,)\chi_{25920}(2347,\cdot) χ25920(2563,)\chi_{25920}(2563,\cdot) χ25920(2587,)\chi_{25920}(2587,\cdot) χ25920(2803,)\chi_{25920}(2803,\cdot) χ25920(3067,)\chi_{25920}(3067,\cdot) χ25920(3283,)\chi_{25920}(3283,\cdot) χ25920(3307,)\chi_{25920}(3307,\cdot) χ25920(3523,)\chi_{25920}(3523,\cdot) χ25920(3787,)\chi_{25920}(3787,\cdot) χ25920(4003,)\chi_{25920}(4003,\cdot) χ25920(4027,)\chi_{25920}(4027,\cdot) χ25920(4243,)\chi_{25920}(4243,\cdot) χ25920(4507,)\chi_{25920}(4507,\cdot) χ25920(4723,)\chi_{25920}(4723,\cdot) χ25920(4747,)\chi_{25920}(4747,\cdot) χ25920(4963,)\chi_{25920}(4963,\cdot) χ25920(5227,)\chi_{25920}(5227,\cdot) χ25920(5443,)\chi_{25920}(5443,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ432)\Q(\zeta_{432})
Fixed field: Number field defined by a degree 432 polynomial (not computed)

Values on generators

(2431,21061,6401,20737)(2431,21061,6401,20737)(1,e(516),e(827),i)(-1,e\left(\frac{5}{16}\right),e\left(\frac{8}{27}\right),i)

First values

aa 1-11177111113131717191923232929313137374141
χ25920(21067,a) \chi_{ 25920 }(21067, a) 1111e(133216)e\left(\frac{133}{216}\right)e(395432)e\left(\frac{395}{432}\right)e(349432)e\left(\frac{349}{432}\right)e(79)e\left(\frac{7}{9}\right)e(59144)e\left(\frac{59}{144}\right)e(191216)e\left(\frac{191}{216}\right)e(389432)e\left(\frac{389}{432}\right)e(2527)e\left(\frac{25}{27}\right)e(73144)e\left(\frac{73}{144}\right)e(17216)e\left(\frac{17}{216}\right)
sage: chi.jacobi_sum(n)
 
χ25920(21067,a)   \chi_{ 25920 }(21067,a) \; at   a=\;a = e.g. 2