Properties

Label 25920.km
Modulus 2592025920
Conductor 2592025920
Order 432432
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(25920, base_ring=CyclotomicField(432))
 
M = H._module
 
chi = DirichletCharacter(H, M([216,27,368,108]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(187,25920))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 2592025920
Conductor: 2592025920
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 432432
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ432)\Q(\zeta_{432})
Fixed field: Number field defined by a degree 432 polynomial (not computed)

First 31 of 144 characters in Galois orbit

Character 1-1 11 77 1111 1313 1717 1919 2323 2929 3131 3737 4141
χ25920(187,)\chi_{25920}(187,\cdot) 11 11 e(1216)e\left(\frac{1}{216}\right) e(383432)e\left(\frac{383}{432}\right) e(217432)e\left(\frac{217}{432}\right) e(19)e\left(\frac{1}{9}\right) e(47144)e\left(\frac{47}{144}\right) e(107216)e\left(\frac{107}{216}\right) e(305432)e\left(\frac{305}{432}\right) e(127)e\left(\frac{1}{27}\right) e(85144)e\left(\frac{85}{144}\right) e(5216)e\left(\frac{5}{216}\right)
χ25920(403,)\chi_{25920}(403,\cdot) 11 11 e(199216)e\left(\frac{199}{216}\right) e(185432)e\left(\frac{185}{432}\right) e(415432)e\left(\frac{415}{432}\right) e(19)e\left(\frac{1}{9}\right) e(137144)e\left(\frac{137}{144}\right) e(125216)e\left(\frac{125}{216}\right) e(215432)e\left(\frac{215}{432}\right) e(1027)e\left(\frac{10}{27}\right) e(67144)e\left(\frac{67}{144}\right) e(131216)e\left(\frac{131}{216}\right)
χ25920(427,)\chi_{25920}(427,\cdot) 11 11 e(5216)e\left(\frac{5}{216}\right) e(403432)e\left(\frac{403}{432}\right) e(5432)e\left(\frac{5}{432}\right) e(59)e\left(\frac{5}{9}\right) e(19144)e\left(\frac{19}{144}\right) e(103216)e\left(\frac{103}{216}\right) e(13432)e\left(\frac{13}{432}\right) e(527)e\left(\frac{5}{27}\right) e(65144)e\left(\frac{65}{144}\right) e(25216)e\left(\frac{25}{216}\right)
χ25920(643,)\chi_{25920}(643,\cdot) 11 11 e(203216)e\left(\frac{203}{216}\right) e(205432)e\left(\frac{205}{432}\right) e(203432)e\left(\frac{203}{432}\right) e(59)e\left(\frac{5}{9}\right) e(109144)e\left(\frac{109}{144}\right) e(121216)e\left(\frac{121}{216}\right) e(355432)e\left(\frac{355}{432}\right) e(1427)e\left(\frac{14}{27}\right) e(47144)e\left(\frac{47}{144}\right) e(151216)e\left(\frac{151}{216}\right)
χ25920(907,)\chi_{25920}(907,\cdot) 11 11 e(13216)e\left(\frac{13}{216}\right) e(11432)e\left(\frac{11}{432}\right) e(13432)e\left(\frac{13}{432}\right) e(49)e\left(\frac{4}{9}\right) e(107144)e\left(\frac{107}{144}\right) e(95216)e\left(\frac{95}{216}\right) e(293432)e\left(\frac{293}{432}\right) e(1327)e\left(\frac{13}{27}\right) e(25144)e\left(\frac{25}{144}\right) e(65216)e\left(\frac{65}{216}\right)
χ25920(1123,)\chi_{25920}(1123,\cdot) 11 11 e(211216)e\left(\frac{211}{216}\right) e(245432)e\left(\frac{245}{432}\right) e(211432)e\left(\frac{211}{432}\right) e(49)e\left(\frac{4}{9}\right) e(53144)e\left(\frac{53}{144}\right) e(113216)e\left(\frac{113}{216}\right) e(203432)e\left(\frac{203}{432}\right) e(2227)e\left(\frac{22}{27}\right) e(7144)e\left(\frac{7}{144}\right) e(191216)e\left(\frac{191}{216}\right)
χ25920(1147,)\chi_{25920}(1147,\cdot) 11 11 e(161216)e\left(\frac{161}{216}\right) e(319432)e\left(\frac{319}{432}\right) e(377432)e\left(\frac{377}{432}\right) e(89)e\left(\frac{8}{9}\right) e(79144)e\left(\frac{79}{144}\right) e(163216)e\left(\frac{163}{216}\right) e(289432)e\left(\frac{289}{432}\right) e(2627)e\left(\frac{26}{27}\right) e(5144)e\left(\frac{5}{144}\right) e(157216)e\left(\frac{157}{216}\right)
χ25920(1363,)\chi_{25920}(1363,\cdot) 11 11 e(143216)e\left(\frac{143}{216}\right) e(121432)e\left(\frac{121}{432}\right) e(143432)e\left(\frac{143}{432}\right) e(89)e\left(\frac{8}{9}\right) e(25144)e\left(\frac{25}{144}\right) e(181216)e\left(\frac{181}{216}\right) e(199432)e\left(\frac{199}{432}\right) e(827)e\left(\frac{8}{27}\right) e(131144)e\left(\frac{131}{144}\right) e(67216)e\left(\frac{67}{216}\right)
χ25920(1627,)\chi_{25920}(1627,\cdot) 11 11 e(25216)e\left(\frac{25}{216}\right) e(71432)e\left(\frac{71}{432}\right) e(241432)e\left(\frac{241}{432}\right) e(79)e\left(\frac{7}{9}\right) e(23144)e\left(\frac{23}{144}\right) e(83216)e\left(\frac{83}{216}\right) e(281432)e\left(\frac{281}{432}\right) e(2527)e\left(\frac{25}{27}\right) e(109144)e\left(\frac{109}{144}\right) e(125216)e\left(\frac{125}{216}\right)
χ25920(1843,)\chi_{25920}(1843,\cdot) 11 11 e(7216)e\left(\frac{7}{216}\right) e(305432)e\left(\frac{305}{432}\right) e(7432)e\left(\frac{7}{432}\right) e(79)e\left(\frac{7}{9}\right) e(113144)e\left(\frac{113}{144}\right) e(101216)e\left(\frac{101}{216}\right) e(191432)e\left(\frac{191}{432}\right) e(727)e\left(\frac{7}{27}\right) e(91144)e\left(\frac{91}{144}\right) e(35216)e\left(\frac{35}{216}\right)
χ25920(1867,)\chi_{25920}(1867,\cdot) 11 11 e(101216)e\left(\frac{101}{216}\right) e(235432)e\left(\frac{235}{432}\right) e(317432)e\left(\frac{317}{432}\right) e(29)e\left(\frac{2}{9}\right) e(139144)e\left(\frac{139}{144}\right) e(7216)e\left(\frac{7}{216}\right) e(133432)e\left(\frac{133}{432}\right) e(2027)e\left(\frac{20}{27}\right) e(89144)e\left(\frac{89}{144}\right) e(73216)e\left(\frac{73}{216}\right)
χ25920(2083,)\chi_{25920}(2083,\cdot) 11 11 e(83216)e\left(\frac{83}{216}\right) e(37432)e\left(\frac{37}{432}\right) e(83432)e\left(\frac{83}{432}\right) e(29)e\left(\frac{2}{9}\right) e(85144)e\left(\frac{85}{144}\right) e(25216)e\left(\frac{25}{216}\right) e(43432)e\left(\frac{43}{432}\right) e(227)e\left(\frac{2}{27}\right) e(71144)e\left(\frac{71}{144}\right) e(199216)e\left(\frac{199}{216}\right)
χ25920(2347,)\chi_{25920}(2347,\cdot) 11 11 e(37216)e\left(\frac{37}{216}\right) e(131432)e\left(\frac{131}{432}\right) e(37432)e\left(\frac{37}{432}\right) e(19)e\left(\frac{1}{9}\right) e(83144)e\left(\frac{83}{144}\right) e(71216)e\left(\frac{71}{216}\right) e(269432)e\left(\frac{269}{432}\right) e(1027)e\left(\frac{10}{27}\right) e(49144)e\left(\frac{49}{144}\right) e(185216)e\left(\frac{185}{216}\right)
χ25920(2563,)\chi_{25920}(2563,\cdot) 11 11 e(19216)e\left(\frac{19}{216}\right) e(365432)e\left(\frac{365}{432}\right) e(235432)e\left(\frac{235}{432}\right) e(19)e\left(\frac{1}{9}\right) e(29144)e\left(\frac{29}{144}\right) e(89216)e\left(\frac{89}{216}\right) e(179432)e\left(\frac{179}{432}\right) e(1927)e\left(\frac{19}{27}\right) e(31144)e\left(\frac{31}{144}\right) e(95216)e\left(\frac{95}{216}\right)
χ25920(2587,)\chi_{25920}(2587,\cdot) 11 11 e(41216)e\left(\frac{41}{216}\right) e(151432)e\left(\frac{151}{432}\right) e(257432)e\left(\frac{257}{432}\right) e(59)e\left(\frac{5}{9}\right) e(55144)e\left(\frac{55}{144}\right) e(67216)e\left(\frac{67}{216}\right) e(409432)e\left(\frac{409}{432}\right) e(1427)e\left(\frac{14}{27}\right) e(29144)e\left(\frac{29}{144}\right) e(205216)e\left(\frac{205}{216}\right)
χ25920(2803,)\chi_{25920}(2803,\cdot) 11 11 e(23216)e\left(\frac{23}{216}\right) e(385432)e\left(\frac{385}{432}\right) e(23432)e\left(\frac{23}{432}\right) e(59)e\left(\frac{5}{9}\right) e(1144)e\left(\frac{1}{144}\right) e(85216)e\left(\frac{85}{216}\right) e(319432)e\left(\frac{319}{432}\right) e(2327)e\left(\frac{23}{27}\right) e(11144)e\left(\frac{11}{144}\right) e(115216)e\left(\frac{115}{216}\right)
χ25920(3067,)\chi_{25920}(3067,\cdot) 11 11 e(49216)e\left(\frac{49}{216}\right) e(191432)e\left(\frac{191}{432}\right) e(265432)e\left(\frac{265}{432}\right) e(49)e\left(\frac{4}{9}\right) e(143144)e\left(\frac{143}{144}\right) e(59216)e\left(\frac{59}{216}\right) e(257432)e\left(\frac{257}{432}\right) e(2227)e\left(\frac{22}{27}\right) e(133144)e\left(\frac{133}{144}\right) e(29216)e\left(\frac{29}{216}\right)
χ25920(3283,)\chi_{25920}(3283,\cdot) 11 11 e(31216)e\left(\frac{31}{216}\right) e(425432)e\left(\frac{425}{432}\right) e(31432)e\left(\frac{31}{432}\right) e(49)e\left(\frac{4}{9}\right) e(89144)e\left(\frac{89}{144}\right) e(77216)e\left(\frac{77}{216}\right) e(167432)e\left(\frac{167}{432}\right) e(427)e\left(\frac{4}{27}\right) e(115144)e\left(\frac{115}{144}\right) e(155216)e\left(\frac{155}{216}\right)
χ25920(3307,)\chi_{25920}(3307,\cdot) 11 11 e(197216)e\left(\frac{197}{216}\right) e(67432)e\left(\frac{67}{432}\right) e(197432)e\left(\frac{197}{432}\right) e(89)e\left(\frac{8}{9}\right) e(115144)e\left(\frac{115}{144}\right) e(127216)e\left(\frac{127}{216}\right) e(253432)e\left(\frac{253}{432}\right) e(827)e\left(\frac{8}{27}\right) e(113144)e\left(\frac{113}{144}\right) e(121216)e\left(\frac{121}{216}\right)
χ25920(3523,)\chi_{25920}(3523,\cdot) 11 11 e(179216)e\left(\frac{179}{216}\right) e(301432)e\left(\frac{301}{432}\right) e(395432)e\left(\frac{395}{432}\right) e(89)e\left(\frac{8}{9}\right) e(61144)e\left(\frac{61}{144}\right) e(145216)e\left(\frac{145}{216}\right) e(163432)e\left(\frac{163}{432}\right) e(1727)e\left(\frac{17}{27}\right) e(95144)e\left(\frac{95}{144}\right) e(31216)e\left(\frac{31}{216}\right)
χ25920(3787,)\chi_{25920}(3787,\cdot) 11 11 e(61216)e\left(\frac{61}{216}\right) e(251432)e\left(\frac{251}{432}\right) e(61432)e\left(\frac{61}{432}\right) e(79)e\left(\frac{7}{9}\right) e(59144)e\left(\frac{59}{144}\right) e(47216)e\left(\frac{47}{216}\right) e(245432)e\left(\frac{245}{432}\right) e(727)e\left(\frac{7}{27}\right) e(73144)e\left(\frac{73}{144}\right) e(89216)e\left(\frac{89}{216}\right)
χ25920(4003,)\chi_{25920}(4003,\cdot) 11 11 e(43216)e\left(\frac{43}{216}\right) e(53432)e\left(\frac{53}{432}\right) e(259432)e\left(\frac{259}{432}\right) e(79)e\left(\frac{7}{9}\right) e(5144)e\left(\frac{5}{144}\right) e(65216)e\left(\frac{65}{216}\right) e(155432)e\left(\frac{155}{432}\right) e(1627)e\left(\frac{16}{27}\right) e(55144)e\left(\frac{55}{144}\right) e(215216)e\left(\frac{215}{216}\right)
χ25920(4027,)\chi_{25920}(4027,\cdot) 11 11 e(137216)e\left(\frac{137}{216}\right) e(415432)e\left(\frac{415}{432}\right) e(137432)e\left(\frac{137}{432}\right) e(29)e\left(\frac{2}{9}\right) e(31144)e\left(\frac{31}{144}\right) e(187216)e\left(\frac{187}{216}\right) e(97432)e\left(\frac{97}{432}\right) e(227)e\left(\frac{2}{27}\right) e(53144)e\left(\frac{53}{144}\right) e(37216)e\left(\frac{37}{216}\right)
χ25920(4243,)\chi_{25920}(4243,\cdot) 11 11 e(119216)e\left(\frac{119}{216}\right) e(217432)e\left(\frac{217}{432}\right) e(335432)e\left(\frac{335}{432}\right) e(29)e\left(\frac{2}{9}\right) e(121144)e\left(\frac{121}{144}\right) e(205216)e\left(\frac{205}{216}\right) e(7432)e\left(\frac{7}{432}\right) e(1127)e\left(\frac{11}{27}\right) e(35144)e\left(\frac{35}{144}\right) e(163216)e\left(\frac{163}{216}\right)
χ25920(4507,)\chi_{25920}(4507,\cdot) 11 11 e(73216)e\left(\frac{73}{216}\right) e(311432)e\left(\frac{311}{432}\right) e(289432)e\left(\frac{289}{432}\right) e(19)e\left(\frac{1}{9}\right) e(119144)e\left(\frac{119}{144}\right) e(35216)e\left(\frac{35}{216}\right) e(233432)e\left(\frac{233}{432}\right) e(1927)e\left(\frac{19}{27}\right) e(13144)e\left(\frac{13}{144}\right) e(149216)e\left(\frac{149}{216}\right)
χ25920(4723,)\chi_{25920}(4723,\cdot) 11 11 e(55216)e\left(\frac{55}{216}\right) e(113432)e\left(\frac{113}{432}\right) e(55432)e\left(\frac{55}{432}\right) e(19)e\left(\frac{1}{9}\right) e(65144)e\left(\frac{65}{144}\right) e(53216)e\left(\frac{53}{216}\right) e(143432)e\left(\frac{143}{432}\right) e(127)e\left(\frac{1}{27}\right) e(139144)e\left(\frac{139}{144}\right) e(59216)e\left(\frac{59}{216}\right)
χ25920(4747,)\chi_{25920}(4747,\cdot) 11 11 e(77216)e\left(\frac{77}{216}\right) e(331432)e\left(\frac{331}{432}\right) e(77432)e\left(\frac{77}{432}\right) e(59)e\left(\frac{5}{9}\right) e(91144)e\left(\frac{91}{144}\right) e(31216)e\left(\frac{31}{216}\right) e(373432)e\left(\frac{373}{432}\right) e(2327)e\left(\frac{23}{27}\right) e(137144)e\left(\frac{137}{144}\right) e(169216)e\left(\frac{169}{216}\right)
χ25920(4963,)\chi_{25920}(4963,\cdot) 11 11 e(59216)e\left(\frac{59}{216}\right) e(133432)e\left(\frac{133}{432}\right) e(275432)e\left(\frac{275}{432}\right) e(59)e\left(\frac{5}{9}\right) e(37144)e\left(\frac{37}{144}\right) e(49216)e\left(\frac{49}{216}\right) e(283432)e\left(\frac{283}{432}\right) e(527)e\left(\frac{5}{27}\right) e(119144)e\left(\frac{119}{144}\right) e(79216)e\left(\frac{79}{216}\right)
χ25920(5227,)\chi_{25920}(5227,\cdot) 11 11 e(85216)e\left(\frac{85}{216}\right) e(371432)e\left(\frac{371}{432}\right) e(85432)e\left(\frac{85}{432}\right) e(49)e\left(\frac{4}{9}\right) e(35144)e\left(\frac{35}{144}\right) e(23216)e\left(\frac{23}{216}\right) e(221432)e\left(\frac{221}{432}\right) e(427)e\left(\frac{4}{27}\right) e(97144)e\left(\frac{97}{144}\right) e(209216)e\left(\frac{209}{216}\right)
χ25920(5443,)\chi_{25920}(5443,\cdot) 11 11 e(67216)e\left(\frac{67}{216}\right) e(173432)e\left(\frac{173}{432}\right) e(283432)e\left(\frac{283}{432}\right) e(49)e\left(\frac{4}{9}\right) e(125144)e\left(\frac{125}{144}\right) e(41216)e\left(\frac{41}{216}\right) e(131432)e\left(\frac{131}{432}\right) e(1327)e\left(\frac{13}{27}\right) e(79144)e\left(\frac{79}{144}\right) e(119216)e\left(\frac{119}{216}\right)
χ25920(5467,)\chi_{25920}(5467,\cdot) 11 11 e(17216)e\left(\frac{17}{216}\right) e(247432)e\left(\frac{247}{432}\right) e(17432)e\left(\frac{17}{432}\right) e(89)e\left(\frac{8}{9}\right) e(7144)e\left(\frac{7}{144}\right) e(91216)e\left(\frac{91}{216}\right) e(217432)e\left(\frac{217}{432}\right) e(1727)e\left(\frac{17}{27}\right) e(77144)e\left(\frac{77}{144}\right) e(85216)e\left(\frac{85}{216}\right)