from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(259200, base_ring=CyclotomicField(720))
M = H._module
chi = DirichletCharacter(H, M([0,495,400,396]))
pari: [g,chi] = znchar(Mod(73,259200))
χ259200(73,⋅)
χ259200(2953,⋅)
χ259200(3097,⋅)
χ259200(5977,⋅)
χ259200(7273,⋅)
χ259200(7417,⋅)
χ259200(8713,⋅)
χ259200(10297,⋅)
χ259200(11737,⋅)
χ259200(13033,⋅)
χ259200(14617,⋅)
χ259200(15913,⋅)
χ259200(17353,⋅)
χ259200(18937,⋅)
χ259200(20233,⋅)
χ259200(20377,⋅)
χ259200(21673,⋅)
χ259200(24553,⋅)
χ259200(24697,⋅)
χ259200(27577,⋅)
χ259200(28873,⋅)
χ259200(29017,⋅)
χ259200(30313,⋅)
χ259200(31897,⋅)
χ259200(33337,⋅)
χ259200(34633,⋅)
χ259200(36217,⋅)
χ259200(37513,⋅)
χ259200(38953,⋅)
χ259200(40537,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(157951,202501,6401,72577) → (1,e(1611),e(95),e(2011))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ259200(73,a) |
−1 | 1 | e(7237) | e(720331) | e(720149) | e(1511) | e(24091) | e(360283) | e(720157) | e(901) | e(240113) | e(36097) |