Properties

Label 259200.73
Modulus $259200$
Conductor $43200$
Order $720$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(720))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,495,400,396]))
 
pari: [g,chi] = znchar(Mod(73,259200))
 

Basic properties

Modulus: \(259200\)
Conductor: \(43200\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(720\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{43200}(14173,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.xx

\(\chi_{259200}(73,\cdot)\) \(\chi_{259200}(2953,\cdot)\) \(\chi_{259200}(3097,\cdot)\) \(\chi_{259200}(5977,\cdot)\) \(\chi_{259200}(7273,\cdot)\) \(\chi_{259200}(7417,\cdot)\) \(\chi_{259200}(8713,\cdot)\) \(\chi_{259200}(10297,\cdot)\) \(\chi_{259200}(11737,\cdot)\) \(\chi_{259200}(13033,\cdot)\) \(\chi_{259200}(14617,\cdot)\) \(\chi_{259200}(15913,\cdot)\) \(\chi_{259200}(17353,\cdot)\) \(\chi_{259200}(18937,\cdot)\) \(\chi_{259200}(20233,\cdot)\) \(\chi_{259200}(20377,\cdot)\) \(\chi_{259200}(21673,\cdot)\) \(\chi_{259200}(24553,\cdot)\) \(\chi_{259200}(24697,\cdot)\) \(\chi_{259200}(27577,\cdot)\) \(\chi_{259200}(28873,\cdot)\) \(\chi_{259200}(29017,\cdot)\) \(\chi_{259200}(30313,\cdot)\) \(\chi_{259200}(31897,\cdot)\) \(\chi_{259200}(33337,\cdot)\) \(\chi_{259200}(34633,\cdot)\) \(\chi_{259200}(36217,\cdot)\) \(\chi_{259200}(37513,\cdot)\) \(\chi_{259200}(38953,\cdot)\) \(\chi_{259200}(40537,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{720})$
Fixed field: Number field defined by a degree 720 polynomial (not computed)

Values on generators

\((157951,202501,6401,72577)\) → \((1,e\left(\frac{11}{16}\right),e\left(\frac{5}{9}\right),e\left(\frac{11}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 259200 }(73, a) \) \(-1\)\(1\)\(e\left(\frac{37}{72}\right)\)\(e\left(\frac{331}{720}\right)\)\(e\left(\frac{149}{720}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{91}{240}\right)\)\(e\left(\frac{283}{360}\right)\)\(e\left(\frac{157}{720}\right)\)\(e\left(\frac{1}{90}\right)\)\(e\left(\frac{113}{240}\right)\)\(e\left(\frac{97}{360}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 259200 }(73,a) \;\) at \(\;a = \) e.g. 2