Properties

Label 259200.73
Modulus 259200259200
Conductor 4320043200
Order 720720
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(720))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,495,400,396]))
 
pari: [g,chi] = znchar(Mod(73,259200))
 

Basic properties

Modulus: 259200259200
Conductor: 4320043200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 720720
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ43200(14173,)\chi_{43200}(14173,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.xx

χ259200(73,)\chi_{259200}(73,\cdot) χ259200(2953,)\chi_{259200}(2953,\cdot) χ259200(3097,)\chi_{259200}(3097,\cdot) χ259200(5977,)\chi_{259200}(5977,\cdot) χ259200(7273,)\chi_{259200}(7273,\cdot) χ259200(7417,)\chi_{259200}(7417,\cdot) χ259200(8713,)\chi_{259200}(8713,\cdot) χ259200(10297,)\chi_{259200}(10297,\cdot) χ259200(11737,)\chi_{259200}(11737,\cdot) χ259200(13033,)\chi_{259200}(13033,\cdot) χ259200(14617,)\chi_{259200}(14617,\cdot) χ259200(15913,)\chi_{259200}(15913,\cdot) χ259200(17353,)\chi_{259200}(17353,\cdot) χ259200(18937,)\chi_{259200}(18937,\cdot) χ259200(20233,)\chi_{259200}(20233,\cdot) χ259200(20377,)\chi_{259200}(20377,\cdot) χ259200(21673,)\chi_{259200}(21673,\cdot) χ259200(24553,)\chi_{259200}(24553,\cdot) χ259200(24697,)\chi_{259200}(24697,\cdot) χ259200(27577,)\chi_{259200}(27577,\cdot) χ259200(28873,)\chi_{259200}(28873,\cdot) χ259200(29017,)\chi_{259200}(29017,\cdot) χ259200(30313,)\chi_{259200}(30313,\cdot) χ259200(31897,)\chi_{259200}(31897,\cdot) χ259200(33337,)\chi_{259200}(33337,\cdot) χ259200(34633,)\chi_{259200}(34633,\cdot) χ259200(36217,)\chi_{259200}(36217,\cdot) χ259200(37513,)\chi_{259200}(37513,\cdot) χ259200(38953,)\chi_{259200}(38953,\cdot) χ259200(40537,)\chi_{259200}(40537,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ720)\Q(\zeta_{720})
Fixed field: Number field defined by a degree 720 polynomial (not computed)

Values on generators

(157951,202501,6401,72577)(157951,202501,6401,72577)(1,e(1116),e(59),e(1120))(1,e\left(\frac{11}{16}\right),e\left(\frac{5}{9}\right),e\left(\frac{11}{20}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ259200(73,a) \chi_{ 259200 }(73, a) 1-111e(3772)e\left(\frac{37}{72}\right)e(331720)e\left(\frac{331}{720}\right)e(149720)e\left(\frac{149}{720}\right)e(1115)e\left(\frac{11}{15}\right)e(91240)e\left(\frac{91}{240}\right)e(283360)e\left(\frac{283}{360}\right)e(157720)e\left(\frac{157}{720}\right)e(190)e\left(\frac{1}{90}\right)e(113240)e\left(\frac{113}{240}\right)e(97360)e\left(\frac{97}{360}\right)
sage: chi.jacobi_sum(n)
 
χ259200(73,a)   \chi_{ 259200 }(73,a) \; at   a=\;a = e.g. 2