from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,30,27,20]))
pari: [g,chi] = znchar(Mod(2187,2600))
Basic properties
Modulus: | \(2600\) | |
Conductor: | \(2600\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2600.fv
\(\chi_{2600}(3,\cdot)\) \(\chi_{2600}(347,\cdot)\) \(\chi_{2600}(523,\cdot)\) \(\chi_{2600}(627,\cdot)\) \(\chi_{2600}(763,\cdot)\) \(\chi_{2600}(867,\cdot)\) \(\chi_{2600}(1147,\cdot)\) \(\chi_{2600}(1283,\cdot)\) \(\chi_{2600}(1387,\cdot)\) \(\chi_{2600}(1563,\cdot)\) \(\chi_{2600}(1667,\cdot)\) \(\chi_{2600}(1803,\cdot)\) \(\chi_{2600}(2083,\cdot)\) \(\chi_{2600}(2187,\cdot)\) \(\chi_{2600}(2323,\cdot)\) \(\chi_{2600}(2427,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((1951,1301,1977,1601)\) → \((-1,-1,e\left(\frac{9}{20}\right),e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2600 }(2187, a) \) | \(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) |
sage: chi.jacobi_sum(n)