Properties

Label 2600.347
Modulus $2600$
Conductor $2600$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,30,51,40]))
 
pari: [g,chi] = znchar(Mod(347,2600))
 

Basic properties

Modulus: \(2600\)
Conductor: \(2600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2600.fv

\(\chi_{2600}(3,\cdot)\) \(\chi_{2600}(347,\cdot)\) \(\chi_{2600}(523,\cdot)\) \(\chi_{2600}(627,\cdot)\) \(\chi_{2600}(763,\cdot)\) \(\chi_{2600}(867,\cdot)\) \(\chi_{2600}(1147,\cdot)\) \(\chi_{2600}(1283,\cdot)\) \(\chi_{2600}(1387,\cdot)\) \(\chi_{2600}(1563,\cdot)\) \(\chi_{2600}(1667,\cdot)\) \(\chi_{2600}(1803,\cdot)\) \(\chi_{2600}(2083,\cdot)\) \(\chi_{2600}(2187,\cdot)\) \(\chi_{2600}(2323,\cdot)\) \(\chi_{2600}(2427,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1951,1301,1977,1601)\) → \((-1,-1,e\left(\frac{17}{20}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2600 }(347, a) \) \(1\)\(1\)\(e\left(\frac{37}{60}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{13}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2600 }(347,a) \;\) at \(\;a = \) e.g. 2