Properties

Label 2600.1217
Modulus $2600$
Conductor $325$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,13,5]))
 
pari: [g,chi] = znchar(Mod(1217,2600))
 

Basic properties

Modulus: \(2600\)
Conductor: \(325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{325}(242,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2600.em

\(\chi_{2600}(177,\cdot)\) \(\chi_{2600}(473,\cdot)\) \(\chi_{2600}(697,\cdot)\) \(\chi_{2600}(1217,\cdot)\) \(\chi_{2600}(1513,\cdot)\) \(\chi_{2600}(1737,\cdot)\) \(\chi_{2600}(2033,\cdot)\) \(\chi_{2600}(2553,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.148970555205860748537816107273101806640625.1

Values on generators

\((1951,1301,1977,1601)\) → \((1,1,e\left(\frac{13}{20}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2600 }(1217, a) \) \(1\)\(1\)\(e\left(\frac{11}{20}\right)\)\(1\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2600 }(1217,a) \;\) at \(\;a = \) e.g. 2