Properties

Label 2600.883
Modulus 26002600
Conductor 26002600
Order 2020
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,3,10]))
 
pari: [g,chi] = znchar(Mod(883,2600))
 

Basic properties

Modulus: 26002600
Conductor: 26002600
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2600.ef

χ2600(363,)\chi_{2600}(363,\cdot) χ2600(467,)\chi_{2600}(467,\cdot) χ2600(883,)\chi_{2600}(883,\cdot) χ2600(987,)\chi_{2600}(987,\cdot) χ2600(1403,)\chi_{2600}(1403,\cdot) χ2600(1923,)\chi_{2600}(1923,\cdot) χ2600(2027,)\chi_{2600}(2027,\cdot) χ2600(2547,)\chi_{2600}(2547,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: 20.20.430807787028125000000000000000000000000000000.1

Values on generators

(1951,1301,1977,1601)(1951,1301,1977,1601)(1,1,e(320),1)(-1,-1,e\left(\frac{3}{20}\right),-1)

First values

aa 1-1113377991111171719192121232327272929
χ2600(883,a) \chi_{ 2600 }(883, a) 1111e(120)e\left(\frac{1}{20}\right)i-ie(110)e\left(\frac{1}{10}\right)e(910)e\left(\frac{9}{10}\right)e(1920)e\left(\frac{19}{20}\right)e(15)e\left(\frac{1}{5}\right)e(45)e\left(\frac{4}{5}\right)e(320)e\left(\frac{3}{20}\right)e(320)e\left(\frac{3}{20}\right)e(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ2600(883,a)   \chi_{ 2600 }(883,a) \; at   a=\;a = e.g. 2