from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,0,27,55]))
chi.galois_orbit()
[g,chi] = znchar(Mod(137,2600))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2600\) | |
Conductor: | \(325\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 325.bi | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2600}(137,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{2600}(297,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) |
\(\chi_{2600}(353,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{30}\right)\) |
\(\chi_{2600}(513,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{2600}(817,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{2600}(873,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) |
\(\chi_{2600}(1033,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{2600}(1177,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) |
\(\chi_{2600}(1337,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{2600}(1553,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{2600}(1697,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) |
\(\chi_{2600}(1913,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) |
\(\chi_{2600}(2073,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) |
\(\chi_{2600}(2217,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{2600}(2377,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) |
\(\chi_{2600}(2433,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{19}{30}\right)\) |