Properties

Label 2600.p
Modulus $2600$
Conductor $520$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1949,2600))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2600\)
Conductor: \(520\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from 520.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{130}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{2600}(1949,\cdot)\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\)