sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(261, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([14,6]))
pari:[g,chi] = znchar(Mod(103,261))
Modulus: | 261 | |
Conductor: | 261 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 21 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ261(7,⋅)
χ261(16,⋅)
χ261(25,⋅)
χ261(49,⋅)
χ261(52,⋅)
χ261(94,⋅)
χ261(103,⋅)
χ261(112,⋅)
χ261(139,⋅)
χ261(169,⋅)
χ261(223,⋅)
χ261(256,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(146,118) → (e(31),e(71))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ261(103,a) |
1 | 1 | e(2110) | e(2120) | e(2117) | e(211) | e(73) | e(72) | e(2119) | e(215) | e(2111) | e(2119) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)