Properties

Label 261.16
Modulus 261261
Conductor 261261
Order 2121
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,6]))
 
pari: [g,chi] = znchar(Mod(16,261))
 

Basic properties

Modulus: 261261
Conductor: 261261
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2121
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 261.q

χ261(7,)\chi_{261}(7,\cdot) χ261(16,)\chi_{261}(16,\cdot) χ261(25,)\chi_{261}(25,\cdot) χ261(49,)\chi_{261}(49,\cdot) χ261(52,)\chi_{261}(52,\cdot) χ261(94,)\chi_{261}(94,\cdot) χ261(103,)\chi_{261}(103,\cdot) χ261(112,)\chi_{261}(112,\cdot) χ261(139,)\chi_{261}(139,\cdot) χ261(169,)\chi_{261}(169,\cdot) χ261(223,)\chi_{261}(223,\cdot) χ261(256,)\chi_{261}(256,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

(146,118)(146,118)(e(23),e(17))(e\left(\frac{2}{3}\right),e\left(\frac{1}{7}\right))

First values

aa 1-111224455778810101111131314141616
χ261(16,a) \chi_{ 261 }(16, a) 1111e(1721)e\left(\frac{17}{21}\right)e(1321)e\left(\frac{13}{21}\right)e(1021)e\left(\frac{10}{21}\right)e(821)e\left(\frac{8}{21}\right)e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)e(521)e\left(\frac{5}{21}\right)e(1921)e\left(\frac{19}{21}\right)e(421)e\left(\frac{4}{21}\right)e(521)e\left(\frac{5}{21}\right)
sage: chi.jacobi_sum(n)
 
χ261(16,a)   \chi_{ 261 }(16,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ261(16,))   \tau_{ a }( \chi_{ 261 }(16,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ261(16,),χ261(n,))   J(\chi_{ 261 }(16,·),\chi_{ 261 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ261(16,))  K(a,b,\chi_{ 261 }(16,·)) \; at   a,b=\; a,b = e.g. 1,2