Properties

Label 1-261-261.16-r0-0-0
Degree 11
Conductor 261261
Sign 0.902+0.430i0.902 + 0.430i
Analytic cond. 1.212071.21207
Root an. cond. 1.212071.21207
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.365 − 0.930i)2-s + (−0.733 − 0.680i)4-s + (−0.988 + 0.149i)5-s + (−0.733 + 0.680i)7-s + (−0.900 + 0.433i)8-s + (−0.222 + 0.974i)10-s + (0.0747 + 0.997i)11-s + (0.826 − 0.563i)13-s + (0.365 + 0.930i)14-s + (0.0747 + 0.997i)16-s + 17-s + (−0.222 + 0.974i)19-s + (0.826 + 0.563i)20-s + (0.955 + 0.294i)22-s + (0.365 + 0.930i)23-s + ⋯
L(s)  = 1  + (0.365 − 0.930i)2-s + (−0.733 − 0.680i)4-s + (−0.988 + 0.149i)5-s + (−0.733 + 0.680i)7-s + (−0.900 + 0.433i)8-s + (−0.222 + 0.974i)10-s + (0.0747 + 0.997i)11-s + (0.826 − 0.563i)13-s + (0.365 + 0.930i)14-s + (0.0747 + 0.997i)16-s + 17-s + (−0.222 + 0.974i)19-s + (0.826 + 0.563i)20-s + (0.955 + 0.294i)22-s + (0.365 + 0.930i)23-s + ⋯

Functional equation

Λ(s)=(261s/2ΓR(s)L(s)=((0.902+0.430i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.902 + 0.430i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(261s/2ΓR(s)L(s)=((0.902+0.430i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.902 + 0.430i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 11
Conductor: 261261    =    32293^{2} \cdot 29
Sign: 0.902+0.430i0.902 + 0.430i
Analytic conductor: 1.212071.21207
Root analytic conductor: 1.212071.21207
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ261(16,)\chi_{261} (16, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (1, 261, (0: ), 0.902+0.430i)(1,\ 261,\ (0:\ ),\ 0.902 + 0.430i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.7866426968+0.1778141233i0.7866426968 + 0.1778141233i
L(12)L(\frac12) \approx 0.7866426968+0.1778141233i0.7866426968 + 0.1778141233i
L(1)L(1) \approx 0.84901808000.1784709181i0.8490180800 - 0.1784709181i
L(1)L(1) \approx 0.84901808000.1784709181i0.8490180800 - 0.1784709181i

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
29 1 1
good2 1+(0.3650.930i)T 1 + (0.365 - 0.930i)T
5 1+(0.988+0.149i)T 1 + (-0.988 + 0.149i)T
7 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
11 1+(0.0747+0.997i)T 1 + (0.0747 + 0.997i)T
13 1+(0.8260.563i)T 1 + (0.826 - 0.563i)T
17 1+T 1 + T
19 1+(0.222+0.974i)T 1 + (-0.222 + 0.974i)T
23 1+(0.365+0.930i)T 1 + (0.365 + 0.930i)T
31 1+(0.988+0.149i)T 1 + (-0.988 + 0.149i)T
37 1+(0.900+0.433i)T 1 + (-0.900 + 0.433i)T
41 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
43 1+(0.9880.149i)T 1 + (-0.988 - 0.149i)T
47 1+(0.0747+0.997i)T 1 + (0.0747 + 0.997i)T
53 1+(0.623+0.781i)T 1 + (0.623 + 0.781i)T
59 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
61 1+(0.733+0.680i)T 1 + (-0.733 + 0.680i)T
67 1+(0.07470.997i)T 1 + (0.0747 - 0.997i)T
71 1+(0.9000.433i)T 1 + (-0.900 - 0.433i)T
73 1+(0.6230.781i)T 1 + (0.623 - 0.781i)T
79 1+(0.826+0.563i)T 1 + (0.826 + 0.563i)T
83 1+(0.9550.294i)T 1 + (0.955 - 0.294i)T
89 1+(0.623+0.781i)T 1 + (0.623 + 0.781i)T
97 1+(0.9550.294i)T 1 + (0.955 - 0.294i)T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−25.97223214335637921651158131803, −24.76039730685925414109395918628, −23.769638017232896102670000364617, −23.36984369067496304375941039104, −22.464953133872458837869267976988, −21.44280965118943218523960937523, −20.34823336071075373655262423846, −19.149042515427463114820476647139, −18.54982697046990069554748001288, −16.99184611569668031796279155685, −16.389971221086538588660024666425, −15.76963542237296634809674284526, −14.63516731994990848363320094945, −13.667711268068855659405937418118, −12.857624181017955161297858537233, −11.76625272102015666495563200437, −10.64135311485379860570955478672, −9.086374542394553027488430555036, −8.347153814289380570655924443067, −7.19823943056259491033651553462, −6.45917672172729445897667997352, −5.15362987660245594772289771968, −3.872993551659599718829178578319, −3.32216715748406745384409780557, −0.53368027758536180237246547480, 1.51074772767116845516571734482, 3.103283480113539990436992588476, 3.72131241633415215989113819547, 5.07702457312248974704261307926, 6.17796529597864894645548550930, 7.65328433830935016919121484045, 8.82331247536525765907290762864, 9.879582081523251789465355034900, 10.79362459139067595185265584620, 12.02642678144740769236120916407, 12.39500676628227901162219069838, 13.47158110260839784822101279758, 14.8630634492655146025845351506, 15.34709759645687267159308709402, 16.551228579287005649498308029622, 18.09580885765667928409258287355, 18.75512571287771241584483629121, 19.58222481354180802459094972499, 20.38556336094520597928432567375, 21.293176891214386433719333184529, 22.4595549447622690863269061595, 23.0322772593567328660821765658, 23.629410120038388338764231716528, 25.10899427909467978167844956705, 25.90921873380537147047179834770

Graph of the ZZ-function along the critical line