Properties

Label 2635.1854
Modulus 26352635
Conductor 155155
Order 66
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2635, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([3,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1854,2635))
 

Basic properties

Modulus: 26352635
Conductor: 155155
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 66
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ155(149,)\chi_{155}(149,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2635.z

χ2635(749,)\chi_{2635}(749,\cdot) χ2635(1854,)\chi_{2635}(1854,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.115440125.1

Values on generators

(1582,156,1956)(1582,156,1956)(1,1,e(13))(-1,1,e\left(\frac{1}{3}\right))

First values

aa 1-11122334466778899111112121313
χ2635(1854,a) \chi_{ 2635 }(1854, a) 11111-1e(56)e\left(\frac{5}{6}\right)11e(13)e\left(\frac{1}{3}\right)e(56)e\left(\frac{5}{6}\right)1-1e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ2635(1854,a)   \chi_{ 2635 }(1854,a) \; at   a=\;a = e.g. 2