Properties

Label 2640.1283
Modulus $2640$
Conductor $2640$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,15,10,15,14]))
 
pari: [g,chi] = znchar(Mod(1283,2640))
 

Basic properties

Modulus: \(2640\)
Conductor: \(2640\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2640.ex

\(\chi_{2640}(83,\cdot)\) \(\chi_{2640}(107,\cdot)\) \(\chi_{2640}(347,\cdot)\) \(\chi_{2640}(563,\cdot)\) \(\chi_{2640}(827,\cdot)\) \(\chi_{2640}(1283,\cdot)\) \(\chi_{2640}(1547,\cdot)\) \(\chi_{2640}(2483,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.360977976896857923653306611918700544000000000000000.1

Values on generators

\((991,661,881,1057,1201)\) → \((-1,-i,-1,-i,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2640 }(1283, a) \) \(1\)\(1\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(-i\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2640 }(1283,a) \;\) at \(\;a = \) e.g. 2