Properties

Label 2640.709
Modulus 26402640
Conductor 880880
Order 2020
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2640, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,5,0,10,8]))
 
Copy content pari:[g,chi] = znchar(Mod(709,2640))
 

Basic properties

Modulus: 26402640
Conductor: 880880
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 2020
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ880(709,)\chi_{880}(709,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2640.eo

χ2640(229,)\chi_{2640}(229,\cdot) χ2640(709,)\chi_{2640}(709,\cdot) χ2640(829,)\chi_{2640}(829,\cdot) χ2640(949,)\chi_{2640}(949,\cdot) χ2640(1549,)\chi_{2640}(1549,\cdot) χ2640(2029,)\chi_{2640}(2029,\cdot) χ2640(2149,)\chi_{2640}(2149,\cdot) χ2640(2269,)\chi_{2640}(2269,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(991,661,881,1057,1201)(991,661,881,1057,1201)(1,i,1,1,e(25))(1,i,1,-1,e\left(\frac{2}{5}\right))

First values

aa 1-11177131317171919232329293131373741414343
χ2640(709,a) \chi_{ 2640 }(709, a) 1111e(45)e\left(\frac{4}{5}\right)e(1320)e\left(\frac{13}{20}\right)e(110)e\left(\frac{1}{10}\right)e(1920)e\left(\frac{19}{20}\right)11e(1120)e\left(\frac{11}{20}\right)e(25)e\left(\frac{2}{5}\right)e(1120)e\left(\frac{11}{20}\right)e(710)e\left(\frac{7}{10}\right)i-i
Copy content sage:chi.jacobi_sum(n)
 
χ2640(709,a)   \chi_{ 2640 }(709,a) \; at   a=\;a = e.g. 2