Properties

Label 2640.709
Modulus $2640$
Conductor $880$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,0,10,8]))
 
pari: [g,chi] = znchar(Mod(709,2640))
 

Basic properties

Modulus: \(2640\)
Conductor: \(880\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{880}(709,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2640.eo

\(\chi_{2640}(229,\cdot)\) \(\chi_{2640}(709,\cdot)\) \(\chi_{2640}(829,\cdot)\) \(\chi_{2640}(949,\cdot)\) \(\chi_{2640}(1549,\cdot)\) \(\chi_{2640}(2029,\cdot)\) \(\chi_{2640}(2149,\cdot)\) \(\chi_{2640}(2269,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((991,661,881,1057,1201)\) → \((1,i,1,-1,e\left(\frac{2}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2640 }(709, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(1\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2640 }(709,a) \;\) at \(\;a = \) e.g. 2