from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2640, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,5,0,10,8]))
pari: [g,chi] = znchar(Mod(709,2640))
Basic properties
Modulus: | \(2640\) | |
Conductor: | \(880\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{880}(709,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2640.eo
\(\chi_{2640}(229,\cdot)\) \(\chi_{2640}(709,\cdot)\) \(\chi_{2640}(829,\cdot)\) \(\chi_{2640}(949,\cdot)\) \(\chi_{2640}(1549,\cdot)\) \(\chi_{2640}(2029,\cdot)\) \(\chi_{2640}(2149,\cdot)\) \(\chi_{2640}(2269,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((991,661,881,1057,1201)\) → \((1,i,1,-1,e\left(\frac{2}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2640 }(709, a) \) | \(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)