Properties

Label 2640.dd
Modulus 26402640
Conductor 13201320
Order 1010
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,5,5,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(119,2640))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 26402640
Conductor: 13201320
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1010
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1320.bx
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 10.10.5333934907699200000.1

Characters in Galois orbit

Character 1-1 11 77 1313 1717 1919 2323 2929 3131 3737 4141 4343
χ2640(119,)\chi_{2640}(119,\cdot) 11 11 e(15)e\left(\frac{1}{5}\right) e(35)e\left(\frac{3}{5}\right) e(25)e\left(\frac{2}{5}\right) e(45)e\left(\frac{4}{5}\right) 1-1 e(15)e\left(\frac{1}{5}\right) e(110)e\left(\frac{1}{10}\right) e(15)e\left(\frac{1}{5}\right) e(310)e\left(\frac{3}{10}\right) 1-1
χ2640(599,)\chi_{2640}(599,\cdot) 11 11 e(45)e\left(\frac{4}{5}\right) e(25)e\left(\frac{2}{5}\right) e(35)e\left(\frac{3}{5}\right) e(15)e\left(\frac{1}{5}\right) 1-1 e(45)e\left(\frac{4}{5}\right) e(910)e\left(\frac{9}{10}\right) e(45)e\left(\frac{4}{5}\right) e(710)e\left(\frac{7}{10}\right) 1-1
χ2640(839,)\chi_{2640}(839,\cdot) 11 11 e(35)e\left(\frac{3}{5}\right) e(45)e\left(\frac{4}{5}\right) e(15)e\left(\frac{1}{5}\right) e(25)e\left(\frac{2}{5}\right) 1-1 e(35)e\left(\frac{3}{5}\right) e(310)e\left(\frac{3}{10}\right) e(35)e\left(\frac{3}{5}\right) e(910)e\left(\frac{9}{10}\right) 1-1
χ2640(2039,)\chi_{2640}(2039,\cdot) 11 11 e(25)e\left(\frac{2}{5}\right) e(15)e\left(\frac{1}{5}\right) e(45)e\left(\frac{4}{5}\right) e(35)e\left(\frac{3}{5}\right) 1-1 e(25)e\left(\frac{2}{5}\right) e(710)e\left(\frac{7}{10}\right) e(25)e\left(\frac{2}{5}\right) e(110)e\left(\frac{1}{10}\right) 1-1