Properties

Label 2640.dd
Modulus $2640$
Conductor $1320$
Order $10$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,5,5,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(119,2640))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2640\)
Conductor: \(1320\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1320.bx
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.5333934907699200000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{2640}(119,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(-1\)
\(\chi_{2640}(599,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(-1\)
\(\chi_{2640}(839,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(-1\)
\(\chi_{2640}(2039,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(-1\)