sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(265, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,19]))
pari:[g,chi] = znchar(Mod(224,265))
Modulus: | 265 | |
Conductor: | 265 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 52 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ265(14,⋅)
χ265(19,⋅)
χ265(34,⋅)
χ265(39,⋅)
χ265(74,⋅)
χ265(79,⋅)
χ265(84,⋅)
χ265(94,⋅)
χ265(104,⋅)
χ265(109,⋅)
χ265(114,⋅)
χ265(124,⋅)
χ265(139,⋅)
χ265(154,⋅)
χ265(164,⋅)
χ265(179,⋅)
χ265(194,⋅)
χ265(204,⋅)
χ265(209,⋅)
χ265(214,⋅)
χ265(224,⋅)
χ265(234,⋅)
χ265(239,⋅)
χ265(244,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(107,161) → (−1,e(5219))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ265(224,a) |
−1 | 1 | e(5245) | e(5237) | e(2619) | e(2615) | e(138) | e(5231) | e(2611) | e(265) | e(5223) | e(267) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)