Properties

Label 265.224
Modulus $265$
Conductor $265$
Order $52$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(265, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,19]))
 
pari: [g,chi] = znchar(Mod(224,265))
 

Basic properties

Modulus: \(265\)
Conductor: \(265\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 265.r

\(\chi_{265}(14,\cdot)\) \(\chi_{265}(19,\cdot)\) \(\chi_{265}(34,\cdot)\) \(\chi_{265}(39,\cdot)\) \(\chi_{265}(74,\cdot)\) \(\chi_{265}(79,\cdot)\) \(\chi_{265}(84,\cdot)\) \(\chi_{265}(94,\cdot)\) \(\chi_{265}(104,\cdot)\) \(\chi_{265}(109,\cdot)\) \(\chi_{265}(114,\cdot)\) \(\chi_{265}(124,\cdot)\) \(\chi_{265}(139,\cdot)\) \(\chi_{265}(154,\cdot)\) \(\chi_{265}(164,\cdot)\) \(\chi_{265}(179,\cdot)\) \(\chi_{265}(194,\cdot)\) \(\chi_{265}(204,\cdot)\) \(\chi_{265}(209,\cdot)\) \(\chi_{265}(214,\cdot)\) \(\chi_{265}(224,\cdot)\) \(\chi_{265}(234,\cdot)\) \(\chi_{265}(239,\cdot)\) \(\chi_{265}(244,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((107,161)\) → \((-1,e\left(\frac{19}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 265 }(224, a) \) \(-1\)\(1\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{37}{52}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{8}{13}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{5}{26}\right)\)\(e\left(\frac{23}{52}\right)\)\(e\left(\frac{7}{26}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 265 }(224,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 265 }(224,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 265 }(224,·),\chi_{ 265 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 265 }(224,·)) \;\) at \(\; a,b = \) e.g. 1,2