Properties

Label 265.224
Modulus 265265
Conductor 265265
Order 5252
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(265, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([26,19]))
 
Copy content pari:[g,chi] = znchar(Mod(224,265))
 

Basic properties

Modulus: 265265
Conductor: 265265
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 5252
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 265.r

χ265(14,)\chi_{265}(14,\cdot) χ265(19,)\chi_{265}(19,\cdot) χ265(34,)\chi_{265}(34,\cdot) χ265(39,)\chi_{265}(39,\cdot) χ265(74,)\chi_{265}(74,\cdot) χ265(79,)\chi_{265}(79,\cdot) χ265(84,)\chi_{265}(84,\cdot) χ265(94,)\chi_{265}(94,\cdot) χ265(104,)\chi_{265}(104,\cdot) χ265(109,)\chi_{265}(109,\cdot) χ265(114,)\chi_{265}(114,\cdot) χ265(124,)\chi_{265}(124,\cdot) χ265(139,)\chi_{265}(139,\cdot) χ265(154,)\chi_{265}(154,\cdot) χ265(164,)\chi_{265}(164,\cdot) χ265(179,)\chi_{265}(179,\cdot) χ265(194,)\chi_{265}(194,\cdot) χ265(204,)\chi_{265}(204,\cdot) χ265(209,)\chi_{265}(209,\cdot) χ265(214,)\chi_{265}(214,\cdot) χ265(224,)\chi_{265}(224,\cdot) χ265(234,)\chi_{265}(234,\cdot) χ265(239,)\chi_{265}(239,\cdot) χ265(244,)\chi_{265}(244,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ52)\Q(\zeta_{52})
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

(107,161)(107,161)(1,e(1952))(-1,e\left(\frac{19}{52}\right))

First values

aa 1-11122334466778899111112121313
χ265(224,a) \chi_{ 265 }(224, a) 1-111e(4552)e\left(\frac{45}{52}\right)e(3752)e\left(\frac{37}{52}\right)e(1926)e\left(\frac{19}{26}\right)e(1526)e\left(\frac{15}{26}\right)e(813)e\left(\frac{8}{13}\right)e(3152)e\left(\frac{31}{52}\right)e(1126)e\left(\frac{11}{26}\right)e(526)e\left(\frac{5}{26}\right)e(2352)e\left(\frac{23}{52}\right)e(726)e\left(\frac{7}{26}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ265(224,a)   \chi_{ 265 }(224,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ265(224,))   \tau_{ a }( \chi_{ 265 }(224,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ265(224,),χ265(n,))   J(\chi_{ 265 }(224,·),\chi_{ 265 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ265(224,))  K(a,b,\chi_{ 265 }(224,·)) \; at   a,b=\; a,b = e.g. 1,2