Properties

Label 2652.1835
Modulus 26522652
Conductor 26522652
Order 1212
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2652, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,6,1,6]))
 
pari: [g,chi] = znchar(Mod(1835,2652))
 

Basic properties

Modulus: 26522652
Conductor: 26522652
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2652.dc

χ2652(1631,)\chi_{2652}(1631,\cdot) χ2652(1835,)\chi_{2652}(1835,\cdot) χ2652(2039,)\chi_{2652}(2039,\cdot) χ2652(2243,)\chi_{2652}(2243,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.129168875843701212129841152.1

Values on generators

(1327,1769,613,1873)(1327,1769,613,1873)(1,1,e(112),1)(-1,-1,e\left(\frac{1}{12}\right),-1)

First values

aa 1-111557711111919232325252929313135353737
χ2652(1835,a) \chi_{ 2652 }(1835, a) 1-111i-ie(1112)e\left(\frac{11}{12}\right)e(112)e\left(\frac{1}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(13)e\left(\frac{1}{3}\right)1-1e(13)e\left(\frac{1}{3}\right)i-ie(23)e\left(\frac{2}{3}\right)e(112)e\left(\frac{1}{12}\right)
sage: chi.jacobi_sum(n)
 
χ2652(1835,a)   \chi_{ 2652 }(1835,a) \; at   a=\;a = e.g. 2