Properties

Label 2652.1919
Modulus 26522652
Conductor 26522652
Order 88
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2652, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,4,2,3]))
 
pari: [g,chi] = znchar(Mod(1919,2652))
 

Basic properties

Modulus: 26522652
Conductor: 26522652
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2652.ct

χ2652(359,)\chi_{2652}(359,\cdot) χ2652(1487,)\chi_{2652}(1487,\cdot) χ2652(1919,)\chi_{2652}(1919,\cdot) χ2652(2423,)\chi_{2652}(2423,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: Number field defined by a degree 8 polynomial

Values on generators

(1327,1769,613,1873)(1327,1769,613,1873)(1,1,i,e(38))(-1,-1,i,e\left(\frac{3}{8}\right))

First values

aa 1-111557711111919232325252929313135353737
χ2652(1919,a) \chi_{ 2652 }(1919, a) 1-111e(58)e\left(\frac{5}{8}\right)e(38)e\left(\frac{3}{8}\right)e(38)e\left(\frac{3}{8}\right)11e(18)e\left(\frac{1}{8}\right)iie(38)e\left(\frac{3}{8}\right)e(18)e\left(\frac{1}{8}\right)11e(18)e\left(\frac{1}{8}\right)
sage: chi.jacobi_sum(n)
 
χ2652(1919,a)   \chi_{ 2652 }(1919,a) \; at   a=\;a = e.g. 2