Properties

Label 2652.1919
Modulus $2652$
Conductor $2652$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2652, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,4,2,3]))
 
pari: [g,chi] = znchar(Mod(1919,2652))
 

Basic properties

Modulus: \(2652\)
Conductor: \(2652\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2652.ct

\(\chi_{2652}(359,\cdot)\) \(\chi_{2652}(1487,\cdot)\) \(\chi_{2652}(1919,\cdot)\) \(\chi_{2652}(2423,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: Number field defined by a degree 8 polynomial

Values on generators

\((1327,1769,613,1873)\) → \((-1,-1,i,e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)\(37\)
\( \chi_{ 2652 }(1919, a) \) \(-1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2652 }(1919,a) \;\) at \(\;a = \) e.g. 2