from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2653, base_ring=CyclotomicField(378))
M = H._module
chi = DirichletCharacter(H, M([63,136]))
pari: [g,chi] = znchar(Mod(570,2653))
χ2653(26,⋅)
χ2653(45,⋅)
χ2653(80,⋅)
χ2653(101,⋅)
χ2653(110,⋅)
χ2653(129,⋅)
χ2653(136,⋅)
χ2653(173,⋅)
χ2653(187,⋅)
χ2653(227,⋅)
χ2653(248,⋅)
χ2653(257,⋅)
χ2653(290,⋅)
χ2653(297,⋅)
χ2653(341,⋅)
χ2653(367,⋅)
χ2653(376,⋅)
χ2653(383,⋅)
χ2653(388,⋅)
χ2653(395,⋅)
χ2653(437,⋅)
χ2653(460,⋅)
χ2653(493,⋅)
χ2653(509,⋅)
χ2653(523,⋅)
χ2653(528,⋅)
χ2653(570,⋅)
χ2653(600,⋅)
χ2653(635,⋅)
χ2653(642,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(759,2276) → (e(61),e(18968))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ2653(570,a) |
−1 | 1 | e(189131) | e(378173) | e(18973) | e(149) | e(12619) | e(635) | e(189173) | e(378127) | e(2720) | e(378319) |