Properties

Label 2664.1733
Modulus 26642664
Conductor 26642664
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6,10,3]))
 
pari: [g,chi] = znchar(Mod(1733,2664))
 

Basic properties

Modulus: 26642664
Conductor: 26642664
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2664.dz

χ2664(1301,)\chi_{2664}(1301,\cdot) χ2664(1733,)\chi_{2664}(1733,\cdot) χ2664(2189,)\chi_{2664}(2189,\cdot) χ2664(2621,)\chi_{2664}(2621,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.13198908662139975403478188032.1

Values on generators

(1999,1333,2369,1297)(1999,1333,2369,1297)(1,1,e(56),i)(1,-1,e\left(\frac{5}{6}\right),i)

First values

aa 1-111557711111313171719192323252529293131
χ2664(1733,a) \chi_{ 2664 }(1733, a) 1111e(512)e\left(\frac{5}{12}\right)e(13)e\left(\frac{1}{3}\right)e(56)e\left(\frac{5}{6}\right)e(1112)e\left(\frac{11}{12}\right)iiiie(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)e(712)e\left(\frac{7}{12}\right)e(1112)e\left(\frac{11}{12}\right)
sage: chi.jacobi_sum(n)
 
χ2664(1733,a)   \chi_{ 2664 }(1733,a) \; at   a=\;a = e.g. 2