Properties

Label 2675.116
Modulus $2675$
Conductor $2675$
Order $265$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2675, base_ring=CyclotomicField(530))
 
M = H._module
 
chi = DirichletCharacter(H, M([106,170]))
 
pari: [g,chi] = znchar(Mod(116,2675))
 

Basic properties

Modulus: \(2675\)
Conductor: \(2675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(265\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2675.s

\(\chi_{2675}(11,\cdot)\) \(\chi_{2675}(16,\cdot)\) \(\chi_{2675}(36,\cdot)\) \(\chi_{2675}(41,\cdot)\) \(\chi_{2675}(56,\cdot)\) \(\chi_{2675}(61,\cdot)\) \(\chi_{2675}(81,\cdot)\) \(\chi_{2675}(86,\cdot)\) \(\chi_{2675}(111,\cdot)\) \(\chi_{2675}(116,\cdot)\) \(\chi_{2675}(121,\cdot)\) \(\chi_{2675}(136,\cdot)\) \(\chi_{2675}(141,\cdot)\) \(\chi_{2675}(146,\cdot)\) \(\chi_{2675}(156,\cdot)\) \(\chi_{2675}(171,\cdot)\) \(\chi_{2675}(186,\cdot)\) \(\chi_{2675}(196,\cdot)\) \(\chi_{2675}(206,\cdot)\) \(\chi_{2675}(241,\cdot)\) \(\chi_{2675}(256,\cdot)\) \(\chi_{2675}(261,\cdot)\) \(\chi_{2675}(266,\cdot)\) \(\chi_{2675}(271,\cdot)\) \(\chi_{2675}(306,\cdot)\) \(\chi_{2675}(316,\cdot)\) \(\chi_{2675}(331,\cdot)\) \(\chi_{2675}(346,\cdot)\) \(\chi_{2675}(356,\cdot)\) \(\chi_{2675}(361,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{265})$
Fixed field: Number field defined by a degree 265 polynomial (not computed)

Values on generators

\((1927,751)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{17}{53}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 2675 }(116, a) \) \(1\)\(1\)\(e\left(\frac{138}{265}\right)\)\(e\left(\frac{226}{265}\right)\)\(e\left(\frac{11}{265}\right)\)\(e\left(\frac{99}{265}\right)\)\(e\left(\frac{42}{53}\right)\)\(e\left(\frac{149}{265}\right)\)\(e\left(\frac{187}{265}\right)\)\(e\left(\frac{68}{265}\right)\)\(e\left(\frac{237}{265}\right)\)\(e\left(\frac{77}{265}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2675 }(116,a) \;\) at \(\;a = \) e.g. 2