sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2675, base_ring=CyclotomicField(530))
M = H._module
chi = DirichletCharacter(H, M([106,170]))
pari:[g,chi] = znchar(Mod(116,2675))
Modulus: | 2675 | |
Conductor: | 2675 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 265 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2675(11,⋅)
χ2675(16,⋅)
χ2675(36,⋅)
χ2675(41,⋅)
χ2675(56,⋅)
χ2675(61,⋅)
χ2675(81,⋅)
χ2675(86,⋅)
χ2675(111,⋅)
χ2675(116,⋅)
χ2675(121,⋅)
χ2675(136,⋅)
χ2675(141,⋅)
χ2675(146,⋅)
χ2675(156,⋅)
χ2675(171,⋅)
χ2675(186,⋅)
χ2675(196,⋅)
χ2675(206,⋅)
χ2675(241,⋅)
χ2675(256,⋅)
χ2675(261,⋅)
χ2675(266,⋅)
χ2675(271,⋅)
χ2675(306,⋅)
χ2675(316,⋅)
χ2675(331,⋅)
χ2675(346,⋅)
χ2675(356,⋅)
χ2675(361,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1927,751) → (e(51),e(5317))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ2675(116,a) |
1 | 1 | e(265138) | e(265226) | e(26511) | e(26599) | e(5342) | e(265149) | e(265187) | e(26568) | e(265237) | e(26577) |
sage:chi.jacobi_sum(n)