Basic properties
Modulus: | \(2675\) | |
Conductor: | \(2675\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(265\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2675.s
\(\chi_{2675}(11,\cdot)\) \(\chi_{2675}(16,\cdot)\) \(\chi_{2675}(36,\cdot)\) \(\chi_{2675}(41,\cdot)\) \(\chi_{2675}(56,\cdot)\) \(\chi_{2675}(61,\cdot)\) \(\chi_{2675}(81,\cdot)\) \(\chi_{2675}(86,\cdot)\) \(\chi_{2675}(111,\cdot)\) \(\chi_{2675}(116,\cdot)\) \(\chi_{2675}(121,\cdot)\) \(\chi_{2675}(136,\cdot)\) \(\chi_{2675}(141,\cdot)\) \(\chi_{2675}(146,\cdot)\) \(\chi_{2675}(156,\cdot)\) \(\chi_{2675}(171,\cdot)\) \(\chi_{2675}(186,\cdot)\) \(\chi_{2675}(196,\cdot)\) \(\chi_{2675}(206,\cdot)\) \(\chi_{2675}(241,\cdot)\) \(\chi_{2675}(256,\cdot)\) \(\chi_{2675}(261,\cdot)\) \(\chi_{2675}(266,\cdot)\) \(\chi_{2675}(271,\cdot)\) \(\chi_{2675}(306,\cdot)\) \(\chi_{2675}(316,\cdot)\) \(\chi_{2675}(331,\cdot)\) \(\chi_{2675}(346,\cdot)\) \(\chi_{2675}(356,\cdot)\) \(\chi_{2675}(361,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{265})$ |
Fixed field: | Number field defined by a degree 265 polynomial (not computed) |
Values on generators
\((1927,751)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{17}{53}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 2675 }(116, a) \) | \(1\) | \(1\) | \(e\left(\frac{138}{265}\right)\) | \(e\left(\frac{226}{265}\right)\) | \(e\left(\frac{11}{265}\right)\) | \(e\left(\frac{99}{265}\right)\) | \(e\left(\frac{42}{53}\right)\) | \(e\left(\frac{149}{265}\right)\) | \(e\left(\frac{187}{265}\right)\) | \(e\left(\frac{68}{265}\right)\) | \(e\left(\frac{237}{265}\right)\) | \(e\left(\frac{77}{265}\right)\) |