Basic properties
Modulus: | \(2675\) | |
Conductor: | \(2675\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(530\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2675.v
\(\chi_{2675}(54,\cdot)\) \(\chi_{2675}(59,\cdot)\) \(\chi_{2675}(84,\cdot)\) \(\chi_{2675}(94,\cdot)\) \(\chi_{2675}(104,\cdot)\) \(\chi_{2675}(109,\cdot)\) \(\chi_{2675}(114,\cdot)\) \(\chi_{2675}(129,\cdot)\) \(\chi_{2675}(139,\cdot)\) \(\chi_{2675}(179,\cdot)\) \(\chi_{2675}(184,\cdot)\) \(\chi_{2675}(189,\cdot)\) \(\chi_{2675}(204,\cdot)\) \(\chi_{2675}(219,\cdot)\) \(\chi_{2675}(229,\cdot)\) \(\chi_{2675}(234,\cdot)\) \(\chi_{2675}(259,\cdot)\) \(\chi_{2675}(264,\cdot)\) \(\chi_{2675}(269,\cdot)\) \(\chi_{2675}(279,\cdot)\) \(\chi_{2675}(284,\cdot)\) \(\chi_{2675}(294,\cdot)\) \(\chi_{2675}(309,\cdot)\) \(\chi_{2675}(329,\cdot)\) \(\chi_{2675}(339,\cdot)\) \(\chi_{2675}(359,\cdot)\) \(\chi_{2675}(364,\cdot)\) \(\chi_{2675}(379,\cdot)\) \(\chi_{2675}(384,\cdot)\) \(\chi_{2675}(389,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{265})$ |
Fixed field: | Number field defined by a degree 530 polynomial (not computed) |
Values on generators
\((1927,751)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{59}{106}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 2675 }(364, a) \) | \(-1\) | \(1\) | \(e\left(\frac{227}{265}\right)\) | \(e\left(\frac{33}{530}\right)\) | \(e\left(\frac{189}{265}\right)\) | \(e\left(\frac{487}{530}\right)\) | \(e\left(\frac{23}{53}\right)\) | \(e\left(\frac{151}{265}\right)\) | \(e\left(\frac{33}{265}\right)\) | \(e\left(\frac{12}{265}\right)\) | \(e\left(\frac{411}{530}\right)\) | \(e\left(\frac{261}{530}\right)\) |