Properties

Label 2681.129
Modulus $2681$
Conductor $2681$
Order $1146$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2681, base_ring=CyclotomicField(1146))
 
M = H._module
 
chi = DirichletCharacter(H, M([191,180]))
 
pari: [g,chi] = znchar(Mod(129,2681))
 

Basic properties

Modulus: \(2681\)
Conductor: \(2681\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1146\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2681.n

\(\chi_{2681}(3,\cdot)\) \(\chi_{2681}(12,\cdot)\) \(\chi_{2681}(17,\cdot)\) \(\chi_{2681}(19,\cdot)\) \(\chi_{2681}(24,\cdot)\) \(\chi_{2681}(31,\cdot)\) \(\chi_{2681}(38,\cdot)\) \(\chi_{2681}(54,\cdot)\) \(\chi_{2681}(68,\cdot)\) \(\chi_{2681}(73,\cdot)\) \(\chi_{2681}(75,\cdot)\) \(\chi_{2681}(87,\cdot)\) \(\chi_{2681}(96,\cdot)\) \(\chi_{2681}(101,\cdot)\) \(\chi_{2681}(103,\cdot)\) \(\chi_{2681}(108,\cdot)\) \(\chi_{2681}(110,\cdot)\) \(\chi_{2681}(124,\cdot)\) \(\chi_{2681}(129,\cdot)\) \(\chi_{2681}(136,\cdot)\) \(\chi_{2681}(138,\cdot)\) \(\chi_{2681}(143,\cdot)\) \(\chi_{2681}(150,\cdot)\) \(\chi_{2681}(152,\cdot)\) \(\chi_{2681}(171,\cdot)\) \(\chi_{2681}(173,\cdot)\) \(\chi_{2681}(185,\cdot)\) \(\chi_{2681}(192,\cdot)\) \(\chi_{2681}(201,\cdot)\) \(\chi_{2681}(206,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{573})$
Fixed field: Number field defined by a degree 1146 polynomial (not computed)

Values on generators

\((2299,771)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{30}{191}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 2681 }(129, a) \) \(-1\)\(1\)\(e\left(\frac{218}{573}\right)\)\(e\left(\frac{959}{1146}\right)\)\(e\left(\frac{436}{573}\right)\)\(e\left(\frac{1135}{1146}\right)\)\(e\left(\frac{83}{382}\right)\)\(e\left(\frac{27}{191}\right)\)\(e\left(\frac{386}{573}\right)\)\(e\left(\frac{425}{1146}\right)\)\(e\left(\frac{262}{573}\right)\)\(e\left(\frac{685}{1146}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2681 }(129,a) \;\) at \(\;a = \) e.g. 2