Properties

Label 2681.55
Modulus $2681$
Conductor $2681$
Order $382$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2681, base_ring=CyclotomicField(382))
 
M = H._module
 
chi = DirichletCharacter(H, M([191,318]))
 
pari: [g,chi] = znchar(Mod(55,2681))
 

Basic properties

Modulus: \(2681\)
Conductor: \(2681\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(382\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2681.l

\(\chi_{2681}(6,\cdot)\) \(\chi_{2681}(27,\cdot)\) \(\chi_{2681}(34,\cdot)\) \(\chi_{2681}(48,\cdot)\) \(\chi_{2681}(55,\cdot)\) \(\chi_{2681}(62,\cdot)\) \(\chi_{2681}(69,\cdot)\) \(\chi_{2681}(76,\cdot)\) \(\chi_{2681}(139,\cdot)\) \(\chi_{2681}(146,\cdot)\) \(\chi_{2681}(153,\cdot)\) \(\chi_{2681}(174,\cdot)\) \(\chi_{2681}(195,\cdot)\) \(\chi_{2681}(202,\cdot)\) \(\chi_{2681}(216,\cdot)\) \(\chi_{2681}(223,\cdot)\) \(\chi_{2681}(251,\cdot)\) \(\chi_{2681}(258,\cdot)\) \(\chi_{2681}(265,\cdot)\) \(\chi_{2681}(272,\cdot)\) \(\chi_{2681}(279,\cdot)\) \(\chi_{2681}(286,\cdot)\) \(\chi_{2681}(293,\cdot)\) \(\chi_{2681}(300,\cdot)\) \(\chi_{2681}(342,\cdot)\) \(\chi_{2681}(363,\cdot)\) \(\chi_{2681}(370,\cdot)\) \(\chi_{2681}(391,\cdot)\) \(\chi_{2681}(412,\cdot)\) \(\chi_{2681}(419,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{191})$
Fixed field: Number field defined by a degree 382 polynomial (not computed)

Values on generators

\((2299,771)\) → \((-1,e\left(\frac{159}{191}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 2681 }(55, a) \) \(-1\)\(1\)\(e\left(\frac{105}{191}\right)\)\(e\left(\frac{249}{382}\right)\)\(e\left(\frac{19}{191}\right)\)\(e\left(\frac{127}{382}\right)\)\(e\left(\frac{77}{382}\right)\)\(e\left(\frac{124}{191}\right)\)\(e\left(\frac{58}{191}\right)\)\(e\left(\frac{337}{382}\right)\)\(e\left(\frac{170}{191}\right)\)\(e\left(\frac{287}{382}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2681 }(55,a) \;\) at \(\;a = \) e.g. 2