Properties

Label 269.27
Modulus $269$
Conductor $269$
Order $268$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(269, base_ring=CyclotomicField(268))
 
M = H._module
 
chi = DirichletCharacter(H, M([59]))
 
pari: [g,chi] = znchar(Mod(27,269))
 

Basic properties

Modulus: \(269\)
Conductor: \(269\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(268\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 269.f

\(\chi_{269}(2,\cdot)\) \(\chi_{269}(3,\cdot)\) \(\chi_{269}(7,\cdot)\) \(\chi_{269}(8,\cdot)\) \(\chi_{269}(10,\cdot)\) \(\chi_{269}(12,\cdot)\) \(\chi_{269}(15,\cdot)\) \(\chi_{269}(17,\cdot)\) \(\chi_{269}(18,\cdot)\) \(\chi_{269}(19,\cdot)\) \(\chi_{269}(22,\cdot)\) \(\chi_{269}(26,\cdot)\) \(\chi_{269}(27,\cdot)\) \(\chi_{269}(28,\cdot)\) \(\chi_{269}(29,\cdot)\) \(\chi_{269}(31,\cdot)\) \(\chi_{269}(32,\cdot)\) \(\chi_{269}(33,\cdot)\) \(\chi_{269}(35,\cdot)\) \(\chi_{269}(39,\cdot)\) \(\chi_{269}(40,\cdot)\) \(\chi_{269}(42,\cdot)\) \(\chi_{269}(46,\cdot)\) \(\chi_{269}(48,\cdot)\) \(\chi_{269}(50,\cdot)\) \(\chi_{269}(59,\cdot)\) \(\chi_{269}(60,\cdot)\) \(\chi_{269}(63,\cdot)\) \(\chi_{269}(68,\cdot)\) \(\chi_{269}(69,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{268})$
Fixed field: Number field defined by a degree 268 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{59}{268}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 269 }(27, a) \) \(-1\)\(1\)\(e\left(\frac{59}{268}\right)\)\(e\left(\frac{267}{268}\right)\)\(e\left(\frac{59}{134}\right)\)\(e\left(\frac{53}{67}\right)\)\(e\left(\frac{29}{134}\right)\)\(e\left(\frac{49}{268}\right)\)\(e\left(\frac{177}{268}\right)\)\(e\left(\frac{133}{134}\right)\)\(e\left(\frac{3}{268}\right)\)\(e\left(\frac{85}{134}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 269 }(27,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 269 }(27,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 269 }(27,·),\chi_{ 269 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 269 }(27,·)) \;\) at \(\; a,b = \) e.g. 1,2