sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(269, base_ring=CyclotomicField(268))
M = H._module
chi = DirichletCharacter(H, M([59]))
pari:[g,chi] = znchar(Mod(27,269))
Modulus: | 269 | |
Conductor: | 269 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 268 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ269(2,⋅)
χ269(3,⋅)
χ269(7,⋅)
χ269(8,⋅)
χ269(10,⋅)
χ269(12,⋅)
χ269(15,⋅)
χ269(17,⋅)
χ269(18,⋅)
χ269(19,⋅)
χ269(22,⋅)
χ269(26,⋅)
χ269(27,⋅)
χ269(28,⋅)
χ269(29,⋅)
χ269(31,⋅)
χ269(32,⋅)
χ269(33,⋅)
χ269(35,⋅)
χ269(39,⋅)
χ269(40,⋅)
χ269(42,⋅)
χ269(46,⋅)
χ269(48,⋅)
χ269(50,⋅)
χ269(59,⋅)
χ269(60,⋅)
χ269(63,⋅)
χ269(68,⋅)
χ269(69,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(26859)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ269(27,a) |
−1 | 1 | e(26859) | e(268267) | e(13459) | e(6753) | e(13429) | e(26849) | e(268177) | e(134133) | e(2683) | e(13485) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)